RAPID CONSTRUCTION OF REAL NUMBERS BY HALF-CUTS

IWASE, ZJUÑICI

Abstract

This is a rapid construction of the real numbers by using half-cuts of the positive rational numbers, which is based on the idea of Dedekind's cut. Only using these half-cuts, we can naturally define the addition and the multiplication of the positive real numbers and show the completeness of the real numbers.

1. Half Cuts of \mathbb{Q}_{+}

Let \mathbb{Q}_{+}be the set of all the positive rational numbers.
Definition 1.1 A subset A of \mathbb{Q}_{+}is called a half cut of $\mathbb{Q}_{+}($or just a half cut) if the following conditions are satisfied. (i) A is not empty. (ii) A has an upper bound $M \in \mathbb{Q}_{+}$, i.e. if $a \in A$ then $a \leq M$. (iii) If $a \in A$ and $a^{\prime} \in \mathbb{Q}_{+}$with $a^{\prime}<a$, then $a^{\prime} \in A$. (iv) A does not have a maximum number.

The set of all the half cuts of \mathbb{Q}_{+}is denoted by X_{+}.
Definition 1.2 For two half cuts A and B, define $A \leq B$ if $A \subset B$. Define $A<B$ if $A \leq B$ and $A \neq B$.

Lemma 1.3 The relation \leq is a total order on X_{+}, i.e. for half cuts A, B and C, we have (i) $A \leq A$, (ii) if $A \leq B$ and $B \leq A$ then $A=B$, (iii) if $A \leq B$ and $B \leq C$ then $A \leq C$, (iv) $A \leq B$ or $B \leq A$.

Proof. (i), (ii), (iii) are clear. (iv) Assume that $A \not \leq B$. There is a number r with $r \in A$ and $r \notin B$. Since A is a half cut, therefore if $s \in \mathbb{Q}_{+}$and $s<r$ then $s \in A$. Since B is a half cut, therefore if $s \in B$ then $s<r$. Hence $B \leq A$ holds.

Definition 1.4 Define the map $\iota: \mathbb{Q}_{+} \rightarrow X_{+}$by $\iota(r)=\left\{a \in \mathbb{Q}_{+} \mid \bar{a}<r\right\}$.
Fact 1.5 The map ι preserves order, i.e. if $r<s$, then $\iota(r)<\iota(s)$ holds.
Corollary 1.6 The map ι is injective.

2. Addition and Multiplication of Half Cuts of \mathbb{Q}_{+}

Definition 2.1 For half cuts A and B, put $A+B=\{a+b \mid a \in A, b \in B\}$ and put $A B=\{a b \mid a \in A, b \in B\}$.

Lemma 2.2 If A and B are half cuts, then $C=A+B($ resp. $C=A B)$ is a half cut.

Proof. (i) Since A and B are non-empty, therefore C is not empty. (ii) Since A and B have upper bounds, therefore C has an upper bound. (iii) Assume that $c \in C$. There exist $a \in A$ and $b \in B$ such that $c=a+b$ (resp. $c=a b$). If $c^{\prime} \in \mathbb{Q}_{+}$and $c^{\prime} \leq c$, then $a c^{\prime} / c \in A$ and $b c^{\prime} / c \in B$. Since $c^{\prime}=a c^{\prime} / c+b c^{\prime} / c$ (resp. $\left.c^{\prime}=\left(a c^{\prime} / c\right) b\right)$, therefore $c^{\prime} \in C$. (iv) Assume that $c \in C$. There exist $a \in A$ and $b \in B$ such that $c=a+b$ (resp. $c=a b$). There exists $a^{\prime} \in A$ with $a<a^{\prime}$. Then, $c^{\prime}=a^{\prime}+b\left(\right.$ resp. $\left.c^{\prime}=a^{\prime} b\right)$ is an element of C with $c<c^{\prime}$.

Fact 2.3 Let A, B and C be half cuts. Then $A+B=B+A,(A+B)+C=A+$ $(B+C), A B=B A,(A B) C=A(B C), A(B+C)=A B+A C,(A+B) C=A C+B C$.

Lemma 2.4 The addition and multiplication defined above commute with the inclusion map ι, i.e. if $r, s \in \mathbb{Q}_{+}$, then $\iota(r+s)=\iota(r)+\iota(s)$ and $\iota(r s)=\iota(r) \iota(s)$.

Proof. $\iota(r+s) \supset \iota(r)+\iota(s)($ resp. $\iota(r s) \supset \iota(r) \iota(s))$ is clear. Let x be an element of $\iota(r+s)($ resp. $\iota(r s))$. Since $x r /(r+s)<r$ and $x s /(r+s)<s$ (resp. There exists $q \in \mathbb{Q}_{+}$with $x /(s r)<q<1$. Since $q r<r$ and $\left.x /(q r)<s\right)$, therefore $\iota(r+s) \subset \iota(r)+\iota(s)($ resp.$\iota(r s) \subset \iota(r) \iota(s))$.

Lemma 2.5 Let A, B and C be half cuts of \mathbb{Q}_{+}. If $A<B$, then $A+C<B+C$ (resp. $A C<B C$).

Proof. Let r be a number with $r \notin A$ and $r \in B$. Let r^{\prime} be a number with $r<r^{\prime}$ and $r^{\prime} \in B$. There exists a number s with $s \in C$ and $s+\left(r^{\prime}-r\right) \notin C$ (resp. $\left.s\left(r^{\prime} / r\right) \notin C\right)$. Put $s^{\prime}=s+\left(r^{\prime}-r\right)\left(\right.$ resp. $\left.s^{\prime}=s\left(r^{\prime} / r\right)\right)$. The number $r^{\prime}+s($ resp. $\left.r^{\prime} s\right)$ is an element of $B+C\left(\right.$ resp. BC). Put $t=r^{\prime}+s\left(\right.$ resp. $\left.t=r^{\prime} s\right)$, which is equal to $r+s^{\prime}\left(r e s p . r s^{\prime}\right)$. Since $r \notin A$ and $s^{\prime} \notin C$, therefore $t \notin A+C$ (resp. $t \notin A C$), because if there exist $r^{\prime \prime} \in A$ and $s^{\prime \prime} \in C$ with $t=r^{\prime \prime}+s^{\prime \prime}\left(r e s p . t=r^{\prime \prime} s^{\prime \prime}\right)$, then $r<r^{\prime \prime}$ or $s^{\prime}<s^{\prime \prime}$ must hold. This is a contradiction.

Lemma 2.6 For any half cut A, we have $A \iota(1)=\iota(1) A=A$.
Proof. $A \iota(1) \subset A$ is clear. Assume that $a \in A$. There exists an element $a^{\prime} \in A$ with $a<a^{\prime}$. Since $a / a^{\prime}<1$, therefore $a / a^{\prime} \in \iota(1)$. Hence $a=a^{\prime}\left(a / a^{\prime}\right) \in A \iota(1)$.

Lemma 2.7 The multiplication on X_{+}is Archimedean, i.e. for any two half cuts A and B, there exists a natural number n such that $A<\iota(n) B$.

Proof. Let M be an upper bound of A and let b be an element of B. Since \mathbb{Q}_{+} is Archimedean, there exists a natural number n with $M<n b$.

3. Completeness of Positive Real Numbers

A member of X_{+}is called a positive real number. Denote X_{+}by \mathbb{R}_{+}.
Let Λ be a non-empty subset of \mathbb{R}_{+}. A positive real number α is called a supremum of Λ if it satisfies the following conditions. (i) If $A \in \Lambda$, then $A \leq \alpha$. (ii) If $\alpha^{\prime}<\alpha$ and $\alpha^{\prime} \in \mathbb{R}_{+}$, then there exists $A \in \Lambda$ with $\alpha^{\prime}<A$.

Let Λ be a non-empty subset of \mathbb{R}_{+}and M be an element of \mathbb{R}_{+}. We call M an upper bound of Λ if $A \in \Lambda$ implies $A \leq M$.

Propositon 3.1 Let Λ be a non-empty subsets of \mathbb{R}_{+}with an upper bound. Then Λ has a supremum.

Proof. Let α be the set $\cup_{A \in \Lambda} A$. Then, α is a half cut of \mathbb{Q}_{+}. In fact, (i) α is not empty. (ii) α has an upper bound. (iii) If $a \in \alpha$ and $a^{\prime} \in \mathbb{Q}_{+}$with $a^{\prime}<a$, then $a^{\prime} \in \alpha$ holds. In fact, there exists $A \in \Lambda$ with $a \in A$. Then, $a^{\prime} \in A$. Hence $a^{\prime} \in \alpha$. (iv) α does not have a maximum number. In fact, if $a \in \alpha$, then there exists $A \in \Lambda$ with $a \in A$. Since A is a half cut, therefore there exists $a^{\prime} \in A \subset \alpha$ with $a<a^{\prime}$.

We shall prove that α is a supremum of Λ. If $A \in \Lambda$, then $A \leq \alpha$. If $\alpha^{\prime}<\alpha$, then there exists $r \in \alpha$ with $r \notin \alpha^{\prime}$. There exists $A \in \Lambda$ with $r \in A$. Since $\alpha^{\prime}<A$, we have the conclusion.

4. Constructing Real Numbers from \mathbb{R}_{+}

Constructing real numbers from \mathbb{R}_{+}is same as the construction of \mathbb{Z} from \mathbb{N}.
Departments of the School of Mathematics and Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.

E-mail address: iwase@staff.kanazawa-u.ac.jp

