RAPID CONSTRUCTION OF REAL NUMBERS BY HALF-CUTS

IWASE, ZJUÑICI

Abstract: This is a rapid construction of the real numbers by using half-cuts of the positive rational numbers, which is based on the idea of Dedekind's cut. Only using these half-cuts, we can naturally define the addition and the multiplication of the positive real numbers and show the completeness of the real numbers.

1. Half Cuts of \mathbb{Q}_+

Let \mathbb{Q}_+ be the set of all the positive rational numbers.

Definition 1.1 A subset A of \mathbb{Q}_+ is called a *half cut* of \mathbb{Q}_+ (or just a *half cut*) if the following conditions are satisfied. (i) A is not empty. (ii) A has an *upper bound* $M \in \mathbb{Q}_+$, *i.e.* if $a \in A$ then $a \leq M$. (iii) If $a \in A$ and $a' \in \mathbb{Q}_+$ with a' < a, then $a' \in A$. (iv) A does not have a maximum number.

The set of all the half cuts of \mathbb{Q}_+ is denoted by X_+ .

Definition 1.2 For two half cuts A and B, define $A \leq B$ if $A \subset B$. Define A < B if $A \leq B$ and $A \neq B$.

Lemma 1.3 The relation \leq is a total order on X_+ , *i.e.* for half cuts A, B and C, we have (i) $A \leq A$, (ii) if $A \leq B$ and $B \leq A$ then A = B, (iii) if $A \leq B$ and $B \leq C$ then $A \leq C$, (iv) $A \leq B$ or $B \leq A$.

Proof. (i), (ii), (iii) are clear. (iv) Assume that $A \not\leq B$. There is a number r with $r \in A$ and $r \notin B$. Since A is a half cut, therefore if $s \in \mathbb{Q}_+$ and s < r then $s \in A$. Since B is a half cut, therefore if $s \in B$ then s < r. Hence $B \leq A$ holds. \Box

Definition 1.4 Define the map $\iota : \mathbb{Q}_+ \to X_+$ by $\iota(r) = \{a \in \mathbb{Q}_+ | a < r\}.$

Fact 1.5 The map ι preserves order, *i.e.* if r < s, then $\iota(r) < \iota(s)$ holds. Corollary 1.6 The map ι is injective.

2. Addition and Multiplication of Half Cuts of \mathbb{Q}_+

Definition 2.1 For half cuts A and B, put $A + B = \{a + b | a \in A, b \in B\}$ and put $AB = \{ab | a \in A, b \in B\}$.

Lemma 2.2 If A and B are half cuts, then C = A + B (*resp.* C = AB) is a half cut.

Proof. (i) Since A and B are non-empty, therefore C is not empty. (ii) Since A and B have upper bounds, therefore C has an upper bound. (iii) Assume that $c \in C$. There exist $a \in A$ and $b \in B$ such that c = a + b (resp. c = ab). If $c' \in \mathbb{Q}_+$ and $c' \leq c$, then $ac'/c \in A$ and $bc'/c \in B$. Since c' = ac'/c + bc'/c (resp. c' = (ac'/c)b), therefore $c' \in C$. (iv) Assume that $c \in C$. There exist $a \in A$ and $b \in B$ such that c = a + b (resp. c = ab). There exists $a' \in A$ with a < a'. Then, c' = a' + b (resp. c' = a'b) is an element of C with c < c'.

Fact 2.3 Let A, B and C be half cuts. Then A + B = B + A, (A+B) + C = A + (B+C), AB = BA, (AB)C = A(BC), A(B+C) = AB + AC, (A+B)C = AC + BC.

Lemma 2.4 The addition and multiplication defined above commute with the inclusion map ι , *i.e.* if $r, s \in \mathbb{Q}_+$, then $\iota(r+s) = \iota(r) + \iota(s)$ and $\iota(rs) = \iota(r)\iota(s)$.

Proof. $\iota(r+s) \supset \iota(r) + \iota(s)$ (resp. $\iota(rs) \supset \iota(r)\iota(s)$) is clear. Let x be an element of $\iota(r+s)$ (resp. $\iota(rs)$). Since xr/(r+s) < r and xs/(r+s) < s (resp. There exists $q \in \mathbb{Q}_+$ with x/(sr) < q < 1. Since qr < r and x/(qr) < s), therefore $\iota(r+s) \subset \iota(r) + \iota(s)$ (resp. $\iota(rs) \subset \iota(r)\iota(s)$).

Lemma 2.5 Let A, B and C be half cuts of \mathbb{Q}_+ . If A < B, then A + C < B + C (resp. AC < BC).

Proof. Let r be a number with $r \notin A$ and $r \in B$. Let r' be a number with r < r' and $r' \in B$. There exists a number s with $s \in C$ and $s + (r' - r) \notin C$ (resp. $s(r'/r) \notin C$). Put s' = s + (r' - r) (resp. s' = s(r'/r)). The number r' + s (resp. r's) is an element of B + C (resp. BC). Put t = r' + s (resp. t = r's), which is equal to r + s' (resp. rs'). Since $r \notin A$ and $s' \notin C$, therefore $t \notin A + C$ (resp. $t \notin AC$), because if there exist $r'' \in A$ and $s'' \in C$ with t = r'' + s'' (resp. t = r''s''), then r < r'' or s' < s'' must hold. This is a contradiction.

Lemma 2.6 For any half cut A, we have $A\iota(1) = \iota(1)A = A$.

Proof. $A\iota(1) \subset A$ is clear. Assume that $a \in A$. There exists an element $a' \in A$ with a < a'. Since a/a' < 1, therefore $a/a' \in \iota(1)$. Hence $a = a'(a/a') \in A\iota(1)$. \Box Lemma 2.7 The multiplication on X_+ is Archimedean, *i.e.* for any two half

cuts A and B, there exists a natural number n such that $A < \iota(n)B$.

Proof. Let M be an upper bound of A and let b be an element of B. Since \mathbb{Q}_+ is Archimedean, there exists a natural number n with M < nb.

3. Completeness of Positive Real Numbers

A member of X_+ is called a positive *real number*. Denote X_+ by \mathbb{R}_+ .

Let Λ be a non-empty subset of \mathbb{R}_+ . A positive real number α is called a *supremum* of Λ if it satisfies the following conditions. (i) If $A \in \Lambda$, then $A \leq \alpha$. (ii) If $\alpha' < \alpha$ and $\alpha' \in \mathbb{R}_+$, then there exists $A \in \Lambda$ with $\alpha' < A$.

Let Λ be a non-empty subset of \mathbb{R}_+ and M be an element of \mathbb{R}_+ . We call M an *upper bound* of Λ if $A \in \Lambda$ implies $A \leq M$.

Propositon 3.1 Let Λ be a non-empty subsets of \mathbb{R}_+ with an upper bound. Then Λ has a supremum.

Proof. Let α be the set $\bigcup_{A \in \Lambda} A$. Then, α is a half cut of \mathbb{Q}_+ . In fact, (i) α is not empty. (ii) α has an upper bound. (iii) If $a \in \alpha$ and $a' \in \mathbb{Q}_+$ with a' < a, then $a' \in \alpha$ holds. In fact, there exists $A \in \Lambda$ with $a \in A$. Then, $a' \in A$. Hence $a' \in \alpha$. (iv) α does not have a maximum number. In fact, if $a \in \alpha$, then there exists $A \in \Lambda$ with $a \in A$. Since A is a half cut, therefore there exists $a' \in A \subset \alpha$ with a < a'.

We shall prove that α is a supremum of Λ . If $A \in \Lambda$, then $A \leq \alpha$. If $\alpha' < \alpha$, then there exists $r \in \alpha$ with $r \notin \alpha'$. There exists $A \in \Lambda$ with $r \in A$. Since $\alpha' < A$, we have the conclusion.

4. Constructing Real Numbers from \mathbb{R}_+

Constructing real numbers from \mathbb{R}_+ is same as the construction of \mathbb{Z} from \mathbb{N} .

DEPARTMENTS OF THE SCHOOL OF MATHEMATICS AND PHYSICS, COLLEGE OF SCIENCE AND ENGINEERING, KANAZAWA UNIVERSITY, KAKUMA-MACHI, KANAZAWA, 920-1192, JAPAN.

 $\mathbf{2}$

E-mail address: iwase@staff.kanazawa-u.ac.jp