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Abstract: A rapid construction of the real numbers by using half-cuts of the
positive rational numbers which is based on the idea of Dedekind's cut. We can
naturally de¯ne the addition and the multiplication of the positive real numbers
and show the completeness of the positive real numbers.

1. Half-Cuts of Q+
Let Q+ be the set of all the positive rational numbers.
De¯nition 1.1 A subset A of Q+ is called a half-cut of Q+ (or just a half-cut) if

the following conditions are satis¯ed. (i) A is not empty. (ii) A has an upper bound
M 2 Q+, i.e. if a 2 A then a · M . (iii) If a 2 A and a0 2 Q+ with a0 < a, then
a0 2 A. (iv) A does not have a maximum number.

The set of all the half-cuts of Q+ is denoted by X+.
De¯nition 1.2 For two half-cuts A and B, de¯ne A · B if A ½ B. De¯ne

A < B if A · B and A 6= B.
Lemma 1.3 The relation · is a total order on X+, i.e. for half-cuts A, B and

C, we have (i) A · A, (ii) if A · B and B · A then A = B, (iii) if A · B and
B · C then A · C, (iv) A · B or B · A.
Proof. (i), (ii), (iii) are clear. (iv) Assume that A 6· B. There is an element r

with r 2 A and r =2 B. Since A is a half-cut, therefore if s 2 Q+ and s < r then
s 2 A. Since B is a half-cut, therefore if s 2 B then s < r. Hence B · A holds.
De¯nition 1.4 De¯ne the map ¶ : Q+ ! X+ by ¶(r) = fa 2 Q+ja < rg.
Fact 1.5 The map ¶ preserves order, i.e. if r < s, then ¶(r) < ¶(s) holds.
Lemma 1.6 Assume that r, s and c 2 Q+ with c < r + s (resp. c < rs). Then,

there exist r0, s0 2 Q+ with r0 < r, s0 < s, and c = r0 + s0 (resp. c = r0s0).
Proof. Find r0 2 Q+ with c¡ s < r0 < r (resp. c=s < r0 < r).

2. Addition and Multiplication of Half-Cuts of Q+
De¯nition 2.1 For half-cuts A and B, put A+B = fa+ b j a 2 A; b 2 Bg and

put AB = fab j a 2 A; b 2 Bg.
Lemma 2.2 If A and B are half-cuts, then C = A + B (resp. C = AB) is a

half-cut.
Proof. (i) Since A and B are non-empty, therefore C is not empty. (ii) Since A

and B have upper bounds, therefore C has an upper bound. (iii) See Lemma 1.6.
(iv) Assume that c 2 C. There exist a 2 A and b 2 B such that c = a + b (resp.
c = ab). There exists a0 2 A with a < a0. Then, c0 = a0 + b (resp. c0 = a0b) is an
element of C with c < c0.
Fact 2.3 Let A, B and C be half-cuts. Then A+B = B+A, (A+B)+C = A+

(B+C), AB = BA, (AB)C = A(BC), A(B+C) = AB+AC, (A+B)C = AC+BC.
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Proof. We shall prove A(B + C) ¾ AB + AC. If x 2 AB + AC, then there
exist a, a0 2 A, b 2 B, and c 2 C such that x = ab + a0c. If a < a0, then
x0 = a0b+ a0c = a0(b+ c) 2 A(B + C) and x < x0.
Lemma 2.4 Let A, B and C be half-cuts. If A < B, then A+C < B+C (resp.

AC < BC).
Proof. Assume that r, r + ± 2 B n A and ± > 0 (resp. r, r½ 2 B n A and

½ > 1). There exists an element s 2 C with s + ± =2 C (resp. s½ =2 C). Note that
(r+ ±) + s 2 B+C (resp. (r½)s 2 BC). If (r+ ±) + s 2 A+C (resp. (r½)s 2 AC),
then there exist r0 2 A and s0 2 C such that (r+ ±)+ s = r0 + s0 (resp. r½s = r0s0).
Since r0 < r and s0 < s+ ± (resp. s0 < s½), therefore this is a contradiction.
Lemma 2.5 The addition and multiplication de¯ned above commute with the

inclusion map ¶, i.e. if r, s 2 Q+, then ¶(r + s) = ¶(r) + ¶(s) and ¶(rs) = ¶(r)¶(s).
Proof. ¶(r + s) ¾ ¶(r) + ¶(s) (resp. ¶(rs) ¾ ¶(r)¶(s)) is clear. Assume that

x 2 ¶(r + s), i.e. x < r + s (resp. x 2 ¶(rs), i.e. x < rs). Apply Lemma 1.6.
Lemma 2.6 For any half-cut A, we have A¶(1) = ¶(1)A = A.
Proof. A¶(1) ½ A is clear. Assume that a 2 A. There exists an element a0 2 A

with a < a0. We have a < a01. Apply Lemma1.6.
Lemma 2.7 The multiplication onX+ is Archimedean, i.e. for any two half-cuts

A and B, there exists a natural number n such that A < ¶(n)B.
Proof. Let M be an upper bound of A and let b be an element of B. Since Q+

is Archimedean, therefore there exists a natural number n with M < nb.

3. Completeness of Positive Real Numbers

A member of X+ is called a positive real number. Denote X+ by R+.
Let ¤ be a non-empty subset of R+. A positive real number ® is called a

supremum of ¤ if it satis¯es the following conditions. (i) If A 2 ¤, then A · ®. (ii)
If ®0 < ® and ®0 2 R+, then there exists A 2 ¤ with ®0 < A.

Let ¤ be a non-empty subset of R+ and M be an element of R+. We call M an
upper bound of ¤ if A 2 ¤ implies A ·M .
Propositon 3.1 Let ¤ be a non-empty subsets of R+ with an upper bound.

Then [¤ is a supremum of ¤.
Proof. The set ® = [¤ is a half-cut. The conditions (i) and (ii) are clear. (iii)

If a 2 [¤ and a0 2 Q+ with a0 < a, then a0 2 [¤ holds. In fact, there exists A 2 ¤
with a 2 A. Then, a0 2 A. Hence a0 2 [¤. (iv) [¤ does not have a maximum
number. In fact, if a 2 [¤, then there exists A 2 ¤ with a 2 A. Since A is a
half-cut, therefore there exists a0 2 A ½ [¤ with a < a0.

We shall prove that ® is a supremum of ¤. If A 2 ¤, then A · ®. If ®0 < ®,
then there exists r 2 ® with r =2 ®0. There exists A 2 ¤ with r 2 A. Since ®0 < A,
we have the conclusion.

4. Appendix. Constructing R from R+
If A, C 2 R+ with A < C (resp. [sic]), then there exists one and only one

element B 2 R+ with A+B = C (resp. AB = C). In fact, let B be the supremum
of the set of all the half-cuts B0 with A+B0 < C (resp. AB0 < C).

Hence R is (¡R+) [ f0g [R+.
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