
CONSTRUCTING REAL NUMBERS BY DEDEKIND’S CUTS IN
A SLIGHTLY MODIFIED WAY

IWASE, ZJUÑICI

Let Q be the set of all the rational numbers. Let Q+ (resp. Q−) be the set of
all the positive (resp. negative) rational numbers.

1. Cuts of Q

Definition 1.1 The ordered pair α = (A0, A1) of subsets of Q is called a cut of
Q (or just a cut) if the following conditions are satisfied.

(i) A0 ̸= ∅ and A1 ̸= ∅.
(ii) A0 ∪ A1 = Q or Q \ {r}, where r is a rational number.
(iii) If a0 ∈ A0 and a1 ∈ A1, then a0 < a1 holds. Moreover, if A0 ∪A1 = Q\{r},

then a0 < r < a1 holds.
(iv) A0 does not have a maximum number. A1 does not have a minimum number.
The set of all the cuts of Q is denoted by X.
Let S be a subset of Q. Put −S = {−s|s ∈ S}.
Lemma 1.2 Let α = (A0, A1) be any cut. Then, (−A1,−A0) is a cut. If

A0 ∪ A1 = Q \ {r}, then (−A1) ∪ (−A0) = Q \ {−r}.
Proof. (i) There exists an element a0 in A0. Since −a0 ∈ −A0, therefore, we

have −A0 ̸= ∅. Similarly, we have −A1 ̸= ∅.
(ii) Assume that A0 ∪A1 = Q. Let s be any rational number. Then, −s ∈ A0 or

−s ∈ A1 holds. This means that s ∈ −A0 or s ∈ −A1. Hence (−A1) ∪ (−A0) = Q.
Assume that A0 ∪ A1 = Q \ {r}. Let s be any rational number with s ̸= −r.

Then, −s ∈ A0 or −s ∈ A1 holds. This means that s ∈ −A0 or s ∈ −A1. If
−r ∈ (−A1) ∪ (−A0), then we have r ∈ A0 ∪ A1. This is a contradiction. Hence
(−A1) ∪ (−A0) = Q \ {−r}.

(iii) Assume that a0 ∈ −A0 and that a1 ∈ −A1. Since −a0 ∈ A0 and −a1 ∈ A1,
therefore −a0 < −a1 holds. Hence we have a1 < a0. Moreover, assume that
A0 ∪ A1 = Q \ {r}. Since −a0 < r < −a1, therefore we have a1 < −r < a0.

(iv) Let a0 be an element of −A1. Then, −a0 is an element of A1. Since A1

does not have a minimum number, therefore there exists an element a′ in A1 with
a′ < −a0. Since −a′ is an element of −A1 and −a′ > a0, therefore a0 is not a
maximum number of −A1. We know that −A1 does not have a maximum number.
Similarly, we can prove that −A0 does not have a minimum number. ¤

Remark Lemma 1.2 tells that the definition of a cut in Definition 1.1 is “sym-
metric”.

Definition 1.3 For any cut α = (A0, A1), put −α = (−A1,−A0).
Remark 1.4 Assume that α = (A0, A1) is a cut.
(i-a) A1 = Q \ A0 if Q \ A0 does not have a minimum number. If Q \ A0 has a

minimum number r, then A1 = Q \ (A0 ∪ {r}). This means that A1 is determined
by A0.
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(i-b) A0 = Q \ A1 if Q \ A1 does not have a maximum number. If Q \ A1 has a
maximum number r, then A0 = Q \ (A1 ∪ {r}). This means that A0 is determined
by A1.

(ii-a) If a ∈ A0 and a′ ≤ a, then a′ ∈ A0 holds.
(ii-a’) If a′ /∈ A0 and a′ ≤ a, then a /∈ A0 holds.
(ii-a”) If a ∈ A0 and a′ /∈ A0, then a < a′ holds.
(ii-b) If a ∈ A1 and a ≤ a′, then a′ ∈ A1 holds.
(ii-b’) If a′ /∈ A1 and a ≤ a′, then a /∈ A1 holds.
(ii-b”) If a′ ∈ A1 and a /∈ A1, then a < a′ holds.
Lemma 1.5 For two cuts α = (A0, A1) and β = (B0, B1), A0 ( B0 if and only

if A1 ) B1.
Proof. Assume that A0 ( B0. Then, there exists a rational number r such that

r /∈ A0 and r ∈ B0. Let x be any rational number in B1. Since (B0, B1) is a cut
and r ∈ B0 and x ∈ B1, therefore we have r < x. By Remark 1.4 (ii-a’) and the
fact that r /∈ A0 and that r < x, we have x /∈ A0. If x /∈ A1, then, by Remark
1.4 (ii-b’), we have r /∈ A1. Hence r, x /∈ A0 ∪ A1 holds. This contradicts to the
definition of the cut. Therefore, x ∈ A1 holds. We have proved B1 ⊂ A1.

If B1 = A1, then, by Remark 1.4 (i-b), A0 = B0 holds. This is a contradiction.
We have proved that B1 ( A1.

The converse is proved similarly. ¤
Lemma 1.6 Let α = (A0, A1) and β = (B0, B1) be two cuts. If A0 ⊂ B0 and

A1 ⊂ B1, then α = β holds.
Proof. If A0 ( B0 and A1 ( B1, then, there exist two rational numbers r0 and

r1 with r0 ∈ B0 \ A0, r1 ∈ B1 \ A1. Since r0 ∈ B0 and r1 ∈ B1, therefore r0 < r1.
Since r0 /∈ A0 and r1 /∈ A1 and r0 < r1, therefore r1 /∈ A0 by Remark 1.4 (ii-a’) and
r0 /∈ A1 by Remark 1.4 (ii-b’). Hense Q \ (A0 ∪ A1) contains two distinct rational
numbers r0, r1. This is a contradiction. Therefore, we have A0 = B0 or A1 = B1.
By Remark 1.4 (i-a) or (i-b), we have the conclusion. ¤

2. Order on the set of all the cuts of Q

Definition 2.1 For two cuts α = (A0, A1) and β = (B0, B1), define α ≤ β if
A0 ⊂ B0. Define α < β if α ≤ β and α ̸= β.

We also use the notation β ≥ α (resp. β > α), which is equivalent to α ≤ β
(resp. α < β).

Proposition 2.2 The relation ≤ is a total order on X. i.e.
(1) For any cut α, we have α ≤ α.
(2) For any cuts α and β, if α ≤ β and β ≤ α, then α = β holds.
(3) For any cuts α, β and γ, if α ≤ β and β ≤ γ, then α ≤ γ holds.
(4) For any cuts α and β, we have α ≤ β or β ≤ α.
Proof. Put α = (A0, A1), β = (B0, B1), γ = (C0, C1).
(1) Since A0 ⊂ A0, therefore we have α ≤ α.
(2) Since A0 ⊂ B0 and B0 ⊂ A0, therefore we have A0 = B0. Hence α = β by

Remark 1.4 (i-a).
(3) Since A0 ⊂ B0 and B0 ⊂ C0, therefore we have A0 ⊂ C0. By definition,

α ≤ γ holds.
(4) Assume that α ̸≤ β. Since A0 ̸⊂ B0, therefore there is a rational number r

with r ∈ A0 and r /∈ B0. Let x be any element in B0. By Remark 1.4 (ii-a”), we
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have x < r. By Remark 1.4 (ii-a) and the fact r ∈ A0, we have x ∈ A0. We have
proved B0 ⊂ A0. Hence β ≤ α holds. ¤

3. Inclusion map from Q to the set of all the cuts of Q

Definition 3.1 Define the map ι : Q → X by ι(r) = (] −∞, r[, ]r,+∞[).
Lemma 3.2 The map ι preserves order. i.e. if r < s, then ι(r) < ι(s) holds.
Proof. Assume that r < s. Denote ι(r) by (R0, R1) and ι(s) by (S0, S1). Note

that r ∈ S0 and r /∈ R0. By Proposition 2.2 (4), we have ι(r) < ι(s). ¤
Corollary 3.3 The map ι is injective.

4. Addition of cuts of Q

Let S and T be subsets of rational numbers. Put S + T = {s + t|s ∈ S, t ∈ T}.
Proposition 4.1 For two cuts α = (A0, A1) and β = (B0, B1), put C0 = A0+B0,

C1 = A1 + B1. Then, the following holds.
(a) (i) If x ∈ C0 and a rational number y satisfies y ≤ x, then we have y ∈ C0.

(ii) If x ∈ C1 and a rational number y satisfies y ≥ x, then we have y ∈ C1.
(b) (C0, C1) is a cut.
Proof. (a) (i) Since x ∈ C0, therefore there exist rational numbers a and b such

that a ∈ A0 and b ∈ B0 with c = a + b. Put b′ = b − (x − y). Since b′ ≤ b and
b ∈ B0, therefore we have b′ ∈ B0 by Remark 1.4 (ii-a). Since y = a + b′, therefore
we have y ∈ C0. (ii) can be proved similarly.

(b) (i) Since A0 and B0 are non-empty set, therefore there exist rational numbers
a0 and b0 such that a0 ∈ A0 and b0 ∈ B0. Since a0+b0 is an element of A0+B0 = C0,
therefore we have that C0 is not an empty set. Similarly, we can show that C1 is
not empty.

(ii) Assume that Q \ (C0 ∪ C1) contains more than one rational number, x, y
with x < y. Assume that z is a rational number with x < z < y. If z ∈ C0, then
x < z contradicts to (a)(i). If z ∈ C1, then z < y contradicts to (a)(ii). We have
proved that x < z < y implies z /∈ C0 ∪ C1.

Put r = (y − x)/4. It is a positive rational number. Consider the set of rational
numbers S = {· · · ,−4r,−3r,−2r,−r, 0, r, 2r, 3r, 4r, · · · }. There exists an integer m
such that {· · · , (m − 3)r, (m − 2)r, (m − 1)r} ⊂ A0 and {(m + 1)r, (m + 2)r, (m +
3)r, · · · } ⊂ A1. Similarly, there exists an integer n such that {· · · , (n − 3)r, (n −
2)r, (n−1)r} ⊂ B0 and {(n+1)r, (n+2)r, (n+3)r, · · · } ⊂ B1. Then, {· · · , (m+n−
4)r, (m+n−3)r, (m+n−2)r} ⊂ C0 and {(m+n+2)r, (m+n+3)r, (m+n+4)r, · · · } ⊂
C1. Note that at most three elements of S, namely, (m + n − 1)r, (m + n)r,
(m + n + 1)r, are not contained C0 ∪ C1. Since y − x = 4r, this is a contradiction.

We have shown that Q \ (C0 ∪ C1) consists of at most one rational number.
(iii) For i = 0, 1, let ci be an element of Ci. Then there exists an element ai ∈ Ai

and an element bi ∈ Bi such that ai + bi = ci. Since a0 < a1 and b0 < b1, therefore
c0 < c1 holds.

Assume that Q \ (C0 ∪ C1) = {r}. Assume that c0 ∈ C0 and c0 ≥ r. Then we
have r ∈ C0 by (a)(i). This is a contradiction. Therefore we have c0 < r. Assume
that c1 ∈ C1 and r ≥ c1. Then we have r ∈ C1 by (a)(ii). This is a contradiction.
Therefore we have r < c1.

(iv) Let c0 be an element of C0. There exists an element ai ∈ Ai and an element
bi ∈ Bi such that ai + bi = ci. Since a0 is not a maximum number of A0, therefore
there exists an element a′

0 of A0 with a0 < a′
0. Since b0 is not a maximum number
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of B0, therefore there exists an element b′0 of B0 with b0 < b′0. Since a′
0 + b′0 is an

element of C0 and greater than a0 + b0 = c0, therefore c0 cannot be a maximum
number of C0. Hence C0 does not have a maximum number. Similarly, we can
prove that C1 does not have a minimum number. ¤

Definition 4.2 For two cuts α = (A0, A1) and β = (B0, B1), define α + β =
(A0 + B0, A1 + B1).

By Proposition 4.1, this is a binary operation on X.
Lemma 4.3 Let α = (A0, A1) and β = (B0, B1) be two cuts of Q. Then

α + β = β + α holds.
Proof. Since Ai+Bi = Bi+Ai for i = 0, 1, therefore we have the conclusion. ¤
Lemma 4.4 Let α = (A0, A1), β = (B0, B1) and γ = (C0, C1) be three cuts of

Q. Then (α + β) + γ = α + (β + γ) holds.
Proof. Since (Ai +Bi)+Ci = Ai +(Bi +Ci) for i = 0, 1, therefore we have the

conclusion. ¤
Lemma 4.5 The addition defined above commutes with the inclusion map ι,

i.e. for any rational numbers r, s, we have ι(r + s) = ι(r) + ι(s).
Proof. Put ι(r) = (R0, R1), ι(s) = (S0, S1), ι(r + s) = (T0, T1). If x ∈ R0 and

y ∈ S0, then x < r and y < s hold. Since x + y < r + s, therefore x + y ∈ T0. This
means that R0 + S0 ⊂ T0. Similarly, we can show that R1 + S1 ⊂ T1. By Lemma
1.6, we have the conclusion. ¤

Lemma 4.6 α + ι(0) = ι(0) + α = α holds.
Proof. Put O0 =] − ∞, 0[ and O1 =]0, +∞[. Note that ι(0) = (O0, O1). By

Remark 1.4 (ii-a) and (ii-b), we have A0 +O0 ⊂ A0 and A1 +O1 ⊂ A1. By Lemma
1.6 and Lemma 4.3, we have the conclusion. ¤

Lemma 4.7 For any cut α = (A0, A1), we have α + (−α) = (−α) + α = ι(0).
Proof. Recall that ι(0) = (O0, O1), where O0 =] −∞, 0[ and O1 =]0, +∞[. Let

c be an element of A0 + (−A1). There exist an element a0 ∈ A0 and an element
a1 ∈ A1 with c = a0 + (−a1). Since a0 < a1, therefore c < 0. This means that
A0 + (−A1) ⊂ O0. Similarly, let c be an element of A1 + (−A0). There exist an
element a1 ∈ A1 and an element a0 ∈ A0 with c = a1 + (−a0). Since a0 < a1,
therefore c > 0. This means that A1 + (−A0) ⊂ O1. Lemma 1.6 and Lemma 4.3
completes the proof. ¤

We have proved the following.
Proposition 4.8 (X, +) is an abelian group. Its unit element is ι(0). The

inverse of α is −α.

5. cuts of Q+ or Q−

Definition 5.1 The ordered pair α = (A0, A1) of subsets of Q+ (resp. Q−) is
called a cut of Q+ (resp. Q−) if the following conditions are satisfied.

(i) A0 ̸= ∅ and A1 ̸= ∅.
(ii) A0 ∪A1 is Q+ (resp. Q−) or Q+ \ {r} (resp. Q− \ {r}) where r is a positive

(resp. negative) rational number.
(iii) If a0 ∈ A0 and a1 ∈ A1, then a0 < a1 holds. Moreover, if A0∪A1 = Q+ \{r}

(resp. Q− + \{r}), then a0 < r < a1 holds.
(iv) A0 does not have a maximum number. A1 does not have a minimum number.
Lemma 5.2 (a) Assume that α = (A0, A1) is a cut of Q+. Put Ā0 =]−∞, 0]∪A0

and Ā1 = A1. Then, (Ā0, Ā1) is a cut of Q.
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(b) Assume that α = (A0, A1) is a cut of Q−. Put Ā0 = A0 and Ā1 = A1 ∪
[0, +∞[. Then, (Ā0, Ā1) is a cut of Q.

Proof. (a) (i) Since A0 ⊂ Ā0 and A1 = Ā1, therefore Ā0 ̸= ∅ and Ā1 ̸= ∅.
(ii) Since A0 ∪A1 = Q+ or Q+ \ {r}, therefore Ā0 ∪ Ā1 =]−∞, 0]∪A0 ∪A1 = Q

or Q \ {r}.
(iii) Since any element in Ā0 \ A0 is smaller than any element of A0, therefore

we have the conclusion.
(iv) If Ā0 has a maximum number, then it must be an element of A0. This

means that A0 has a maximum number. This is a contradiction. Since Ā1 = A1,
therefore it does not have a minimum number.

(b) can be proved similarly. ¤
Definition 5.3 In the situation in Lemma 5.2, we call (Ā0, Ā1) the extention of

α = (A0, A1).
Lemma 5.4 Assume that α = (A0, A1) is a cut of Q.
(a) If α > ι(0), then put A′

0 = A0\] −∞, 0] and A′
1 = A1. (A′

0, A
′
1) is a cut of

Q+.
(b) If α < ι(0), then put A′

0 = A0 and A′
1 = A1 \ [0, +∞[. (A′

0, A
′
1) is a cut of

Q−.
Proof. (a) (i) Since A0 contains a positive rational number, therefore A′

0 is not
empty. A′

1 is not empty because A′
1 = A1 ̸= ∅.

(ii) Since A0∪A1 = Q or Q\{r} and r > 0, therefore A′
0∪A′

1 = (A0\]−∞, 0])∪
A1 = (A0 ∪ A1)\] −∞, 0] = Q or Q \ {r}.

(iii) For i = 0, 1, assume that ai ∈ A′
i. Since an element of A′

i is an element of
Ai and α = (A0, A1) is a cut of Q, we have a0 < a1 or a0 < r < a1.

(iv) Since any element of ] −∞, 0] is smaller than any element of A′
0, therefore

if there exists a maximum number of A′
0, then it must be a maximum number of

A0. This contradicts to the fact that α is a cut of Q. Therefore A′
0 does not have a

maximum number. Since Ā1 = A1, therefore it does not have a minimum number.
(b) can be proved similarly. ¤
Definition 5.5 In the situation in Lemma 5.4, we call (A′

0, A
′
1) the restriction

of α to Q+ or Q−.
Lemma 5.6 (A) Let α = (A0, A1) and β = (B0, B1) be cuts of Q+. Let (Ā0, Ā1)

and (B̄0, B̄1) be their extentions. Then, (a) and (b) hold.
(a) A0 + B0 = (Ā0 + B̄0) ∩ Q+.
(b) (A0 + B0, A1 + B1) is a cut of Q+.
(B) Let α = (A0, A1) and β = (B0, B1) be cuts of Q−. Let (Ā0, Ā1) and (B̄0, B̄1)

be their extentions. Then, (a) and (b) hold.
(a) A1 + B1 = (Ā1 + B̄1) ∩ Q−.
(b) (A0 + B0, A1 + B1) is a cut of Q−.
Proof. (A)(a) Since any element of A0 or B0 is positive, therefore we have

A0 + B0 ⊂ (Ā0 + B̄0) ∩ Q+.
Let c be an element of (Ā0 + B̄0) ∩ Q+. Note that c > 0 holds. There exist

rational numbers a and b such that a ∈ Ā0 and b ∈ B̄0 satisfying c = a + b. If
a ∈ A0 and b ∈ B0, then c ∈ A0 + B0 holds. If a /∈ A0 and b /∈ B0, then we have
c = a + b ≤ 0. This contradicts to the fact that c > 0. Assume that a ∈ A0 and
b /∈ B0. Since b ≤ 0, therefore a + b ≤ a holds. Hence a + b is an element of Ā0

by Remark 1.4 (ii-a). Since a + b > 0, therefore a + b is an element of A0. Let b′

be an element of B0. Put b′′ = min(b′, (a + b)/2). Since 0 < b′′ < b′ and b′ ∈ B0,
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therefore b′′ is an element of B0 by Remark 1.4 (ii-a). Put a′′ = a + b − b′′. Since
−b′′ ≥ −(a + b)/2, therefore a′′ ≥ (a + b)/2 > 0. Since a′′ < a + b and a + b ∈ A0,
therefore a′′ is an element of Ā0 by Remark 1.4 (ii-a). Hence we know that a′′ ∈ A0.
Since c = a′′ + b′′, therefore c ∈ A0 + B0. The case that a /∈ A0 and b ∈ B0 can be
treated in the same way.

We have proved A0 + B0 ⊃ (Ā0 + B̄0) ∩ Q+.
Hence we have A0 + B0 = (Ā0 + B̄0) ∩ Q+.
(b) (i) For i = 0, 1, since Ai ̸= ∅ and Bi ̸= ∅, therefore Ai + Bi ̸= ∅ holds.
(ii) In (a), we have proved that A0 + B0 = (Ā0 + B̄0) ∩ Q+. Since A1 + B1 =

Ā1+B̄1 ⊂ Q+, therefore we have (A0+B0)∪(A1+B1) = ((Ā0+B̄0)∪(Ā1+B̄1))∩Q+.
This means that (A0 + B0) ∪ (A1 + B1) = Q+ or Q+ \ {r}, where r is the only
rational number in Q+ \ ((Ā0 + B̄0) ∪ (Ā1 + B̄1)).

(iii) For i = 0, 1, assume that ci ∈ Ai +Bi. Since ci ∈ Āi + B̄i. therefore c0 < c1

or c0 < r < c1 holds.
(iv) By (a), if A0 +B0 has a maximum number, then it is a maximum number of

Ā0+B̄0. This contradiction shows that A0+B0 does not have a maximum number.
Since A1 + B1 = Ā1 + B̄1, therefore it does not have a minimum number.

(B) can be proved similarly. ¤
Definition 5.7 In the situation of Lemma 5.6, define α+β = (A0+B0, A1+B1).
By Lemma 5.6, we have the following.
Propositon 5.8 Let α = (A0, A1) and β = (B0, B1) be cuts of Q+ (resp. Q−).

Put γ = α + β = (A0 + A1, B0 + B1). Let (Ā0, Ā1), (B̄0, B̄1) and (C̄0, C̄1) be the
extentions of α, β and γ respectively. Then, (Ā0 + B̄0, Ā1 + B̄1) = (C̄0, C̄1) holds.

Remark. We can say that the extension and the restriction are compatible with
the addition.

6. product of two cuts of Q+ or Q−

Definition 6.1 Let α = (A0, A1) be a cut of Q+ (resp. Q−). Then, A0 is called
the inner (resp. outer) class of α and A1 is called the outer (resp. inner) class of
α.

Sometimes we use the notation Ainn (resp. Aout) to represent the inner (resp.
outer) class of α = (A0, A1).

Remark. The class “nearer to 0” is called inner.
Let S and T be subsets of Q. We define that ST = {st|s ∈ S, t ∈ T}.
Proposition 6.2 Let α = (A0, A1), β = (B0, B1) be cuts of Q+ or Q−.
(a) If both α and β are cuts of Q+, then (A0B0, A1B1) is a cut of Q+.
(b) If both α and β are cuts of Q−, then (A1B1, A0B0) is a cut of Q+.
(c) If α is a cut of Q+ and β is a cut of Q−, then (A1B0, A0B1) is a cut of Q−.
(d) If α is a cut of Q− and β is a cut of Q+, then (A0B1, A1B0) is a cut of Q−.
Remark. We call (A0B0, A1B1) in (a), (A1B1, A0B0) in (b), (A1B0, A0B1) in

(c) and (A0B1, A1B0) in (d) the products of α and β.
The inner (resp. outer) class of the product is the product of the inner (resp.

outer) classes.
Proof. (a) If a ∈ A0 ∪A1 and b ∈ B0 ∪B1, then a > 0 and b > 0. Hence ab > 0

holds.
Assume that x ∈ A0B0 and a rational number y satisfies 0 < y ≤ x. There

exist rational numbers a and b such that a ∈ A0 and b ∈ B0 with x = ab. Put
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b′ = b(y/x). Since 0 < b′ ≤ b and b ∈ B0, we have b′ ∈ B0 by Remark 1.4 (ii-a).
Since y = ab′, therefore we have y ∈ A0B0.

Assume that x ∈ A1B1 and a rational number y satisfies x ≤ y. There exist
rational numbers a and b such that a ∈ A0 and b ∈ B0 with x = ab. Put b′ = b(y/x).
Since b ≤ b′ and b ∈ B1, we have b′ ∈ B1 by Remark 1.4 (ii-b). Since y = ab′,
therefore we have y ∈ A1B1.

(i) Since A0, A1, B0 and B1 are non-empty sets, therefore we have A0B0 ̸= ∅
and A1B1 ̸= ∅.

(ii) Assume that there exist two distinct positive rational numbers x and x′ such
that x, x′ /∈ A0B0 ∪ A1B1. Let x′′ be any rational number satisfying x < x′′ < x′.
The argument before the proof of (i) shows that x′′ ∈ A0B0 implies x ∈ A0B0.
This contradiction shows that x′′ /∈ A0B0. Similarly, we have x′′ /∈ A1B1. Hence
we have x′′ /∈ A0B0 ∪ A1B1.

Put l = 2x′/(x + x′). It is a rational number. Since 0 < x + x′ < 2x′, therefore
we have l > 1. Since (x + x′)2 > 4xx′, therefore we have l2 < 4x′2/4xx′ = x′/x.
Put k = 2l/(1 + l). It is a rational number. Since 2l > 1 + l, therefore we have
k > 1. Since (1 + l)2 > 2l, therefore we have k2 < 4l2/4l = l. Hence we have
1 < k4 < l2 < x′/x.

Consider the set of positive rational numbers S = {· · · , k−3, k−2, k−1, k0, k1, k2, k3, · · · }.
There exists an integer m such that {· · · , km−3, km−2, km−1} ⊂ A0 and that
{km+1, km+2, km+3, · · · } ⊂ A1. Similarly, there exists an integer n such that
{· · · , kn−3, kn−2, kn−1} ⊂ B0 and that {kn+1, kn+2, kn+3, · · · } ⊂ B1. Then, we
have {· · · , km+n−4, km+n−3, km+n−2} ⊂ A0B0 and {km+n+2, km+n+3, km+n+4, · · · } ⊂
A1B1. Note that at most three element of S, namelly, km+n−1, km+n, km+n+1, are
not contained in A0B0 ∪ A1B1. Since k4 < x′/x, this is a contradiction. We have
proved that A0B0 ∪A1B1 = Q+ or Q+ \{r}, where r is a positive rational number.

(iii) If ai ∈ Ai and bi ∈ Bi for i = 0, 1, then we have a0 < a1 and b0 < b1.
Therefore we have a0b0 < a1b1.

Assume that A0B0∪A1B1 = Q+\{r}. Assumt that c0 ∈ A0B0 and c0 ≥ r. Then
we have r ∈ A0B0 by the argument before the proof of (i). This is a contradiction.
Therefore we have c0 < r. Assume that c1 ∈ A1B1 and r ≥ c1. Then we have
r ∈ A1B1 by the argument before the proof of (i). This is a contradiction. Therefore
we have r < c1.

(iv) Let c0 be an element of A0B0. There exist rational element a0 ∈ A0 and
b0 ∈ B0 such that c0 = a0b0 holds. Since A0 and B0 do not have maximum
numbers, there exist rational numbers a′

0 ∈ A0 and b′0 ∈ B0 such that a0 < a′
0 and

b0 < b′0. Since a0b0 < a′
0b

′
0, therefore c0 is not a maximum number or A0B0. Hence

A0B0 does not have a maximum number. Similarly, we can show that A1B1 does
not have a minimum number.

The other cases (b), (c) and (d) can be proved similarly. ¤

7. Multiplication of cuts of Q

Definition 7.1 Let α, β be two cuts of Q. If one of them is equal to ι(0), then
define αβ = ι(0). Otherwise, choose two cuts of Q+ or Q− whose extensions are
equal to α and β respectively and define αβ to be the extension of the product of
them.

Lemma 7.2 Let α and β be two cuts of Q. Then αβ = βα holds.
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Proof. If α = ι(0) or β = ι(0), then the both sides are equal to ι(0). Otherwise,
let α′, β′ be cuts of Q+ or Q− whose extensions are equal to α and β respectively.
Let A′

inn (resp. A′
out) be the inner (resp. outer) class of α′ and let B′

inn (resp.
B′

out) be the inner (resp. outer) class of β′. Since A′
innB′

inn = B′
innA′

inn and
A′

outB
′
out = B′

outA
′
out, we have the conclusion. ¤

Lemma 7.3 Let α, β and γ be three cuts of Q. Then (αβ)γ = α(βγ) holds.
Proof. If one of them is equal to ι(0), then the both sides are equal to ι(0).

Otherwise, let α′, β′ and γ′ be cuts of Q+ or Q− whose extensions are equal to α, β
and γ respectively. Let A′

inn (resp. A′
out) be the inner (resp. outer) class of α and

let B′
inn (resp. B′

out) be the inner (resp. outer) class of β and let C ′
inn (resp. C ′

out)
be the inner (resp. outer) class of γ. Since (A′

innB′
inn)C ′

inn = A′
inn(B′

innC ′
inn) and

(A′
outB

′
out)C

′
out = A′

out(B
′
outC

′
out), we have the conclusion. ¤

Lemma 7.4 The multiplication defined above commutes with the inclusion map
ι, i.e. for any rational number r, s, we have ι(rs) = ι(r)ι(s).

Proof. If r = 0 or s = 0, then the both sides are equal to ι(0). Assume that
r ̸= 0 and s ̸= 0. If r > 0 and s > 0, then (]0, r[, ]r,+∞[) and (]0, s[, ]s,+∞[)
are cuts of Q+ whose extensions are equal to ι(r) and ι(s) respectively. Since
Q+ \ (]0, r[]0, s[∪]r,+∞[]s,+∞[) contains rs and we know that ι(r)ι(s) is a cut of
Q+, therefore it must be equal to (]0, rs[, ]rs,+∞[). Its extension is equal to ι(rs).
Hence we have the conclusion. Other cases can be treated similarly. ¤

Lemma 7.5 For any cut α, we have αι(1) = ι(1)α = α.
Proof. We shall prove that αι(1) = α.
If α = ι(0), then the both sides are equal to ι(0).
Assume that α > ι(0). Let (A0, A1) be the cut of Q+ whose extension is equal

to α. Note that (I0, I1) = (]0, 1[, ]1,+∞[) is the cut of Q+ whose extension is equal
to ι(1). Let a0 be an element of A0 and i0 be an element of I0. Since 0 < a0i0 < a0

and a0 is an element of A0, therefore we have a0i0 ∈ A0 by Remark 1.4 (ii-a). Hence
we have A0I0 ⊂ A0. Let a1 be an element of A1 and i1 be an element of I1. Since
a1 < a1i1 and a1 is an element of A1, therefore we have a1i1 ∈ A1 by Remark 1.4
(ii-b). Hence we have A1I1 ⊂ A1. Apply Lemma 1.6 to the extension of αι(1) and
α. Then we have αι(1) = α. The case α < ι(0) can be proved similarly.

Lemma 7.2 shows that ι(1)α = αι(1) = α. ¤
Let S be a set of rational numbers with 0 /∈ S. Put S−1 = {s−1|s ∈ S}.
Lemma 7.6 Let α = (A0, A1) be a cut of Q+ (resp. Q−). Then, (A−1

1 , A−1
0 ) is

a cut of Q+ (resp. Q−) and (A0, A1)(A−1
1 , A−1

0 ) = ι(1) holds.
Proof. (i) Since A0 ̸= ∅ and A1 ̸= ∅, therefore A−1

1 ̸= ∅ and A−1
0 ̸= ∅.

(ii) If A0 ∪ A1 = Q+ (resp. Q−), then A−1
1 ∪ A−1

2 = Q+ (resp. Q−). If
A0 ∪ A1 = Q+ \ {r} (resp. Q− \ {r}) then A−1

1 ∪ A−1
2 = Q+ \ {r−1} (resp.

Q− \ {r−1}).
(iii) If a0 ∈ A−1

1 and a1 ∈ A−1
0 , then a−1

0 ∈ A1 and a−1
1 ∈ A0. Therefore we have

a−1
1 < a−1

0 , hence a0 < a1 holds. If A0 ∪ A1 = Q+ \ {r} or Q− \ {r}, then we have
a−1
1 < r−1 < a−1

0 , because a0 < r < a1.
(iv) Let a be an element of A−1

1 . Then, a−1 is an element of A1. A1 does not
have a minimum number, there exists a rational number a′ ∈ A1 with a′ < a−1.
Since a′−1 ∈ A−1

1 and a < a′−1. This means that A−1
1 does not have a maximum

number. Similarly, we can show that A−1
0 does not have a minimum number. ¤

Definition 7.7 In the situation of Lemma 7.6, (A−1
1 , A−1

0 ) ∈ Q+ (resp. Q−) is
called the inverse of α ∈ Q+ (resp. Q−).
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Let α be a cut of Q which is not equal to ι(0). Define α−1 to be the extention
of the inverse of the restriction of α. It is a cut of Q and is called the inverse of α.

Proposition 7.8 (X \ {0},×) is an abelian group. Its unit element if ι(1). The
inverse of α is α−1. (The symbol “×” means the mulplication.)

Lemma 7.9 Let α, β be two cuts of Q with α > ι(0) and β > ι(0). Then,
−αβ = α(−β) holds.

Proof. Let (A0, B0) and (B0, B1) be the restriction of α and β respectively.
They are the cuts of Q+. Since αβ is the extension (A0B0, A1B1), therefore −αβ
is the extention of (−(A1B1),−(A0B0)). Since the restriction of −β is (−B1,−B0),
therefore α(−β) is the extension of (A1(−B1), A0(−B0)). Since (−(A1B1),−(A0B0))
is equal to (A1(−B1), A0(−B0)), therefore we have the conclusion. ¤

Lemma 7.9 Let α, β be two cuts of Q. Then, −αβ = α(−β) holds.
Proof. If α = ι(0) or β = ι(0), then the both sides are equal to ι(0).
Assume that α > ι(0) and β > ι(0). Let (A0, A1) and (B0, B1) be the re-

striction of α and β respectively. They are cuts of Q+. Since αβ is the ex-
tension (A0B0, A1B1), therefore −αβ is the extention of (−(A1B1),−(A0B0)).
Since the restriction of −β is (−B1,−B0), therefore α(−β) is the extension of
(A1(−B1), A0(−B0)). Since (−(A1B1),−(A0B0)) is equal to (A1(−B1), A0(−B0)),
therefore we have the conclusion.

Assume that α > ι(0) and β < ι(0). Since −β > 0, therefore we have −α(−β) =
α(−(−β)) by the case above. Hence we have −αβ = α(−β).

Assume that α < ι(0) and β < ι(0). Let (A0, A1) and (B0, B1) be the re-
striction of α and β respectively. They are cuts of Q−. Since αβ is the ex-
tension (A1B1, A0B0), therefore −αβ is the extention of (−(A0B0),−(A1B1)).
Since the restriction of −β is (−B1,−B0), therefore α(−β) is the extension of
(A0(−B0), A1(−B1)). Since (−(A0B0),−(A1B1)) is equal to (A0(−B0), A1(−B1)),
therefore we have the conclusion.

Assume that α < ι(0) and β > ι(0). Since −β < 0, therefore we have −α(−β) =
α(−(−β)) by the case above. Hence we have −αβ = α(−β). ¤

Lemma 7.10 Let α, β and γ be three cuts of Q. Then α(β + γ) = αβ +αγ and
(α + β)γ = αγ + βγ hold.

Proof. First, we prove α(β + γ) = αβ + αγ.
If α = ι(0), then the both sides are equal to ι(0).
If α ̸= ι(0) and β + γ = ι(0), then the left hand side is equal to ι(0). If

β = γ = ι(0), then the right hand side is equal to ι(0), too.
Assume that α > ι(0) and β > ι(0) and β + γ = ι(0). Since γ = −β, therefore

we have −αβ = αγ by Lemma 7.9. Hence, we have αβ + αγ = ι(0). Since
α(β + γ) = ι(0), therefore we have α(β + γ) = αβ + αγ.

Assume that α > ι(0) and β + γ > ι(0). If β > ι(0) and γ > ι(0), then let
(A0, A1), (B0, B1) and (C0, C1) be cuts of Q+ whose extensions are equal to α,
β and γ respectively. Then, we have A0(B0 + C0) = A0B0 + A0C0 and A1(B1 +
C1) = A1B1 + A1C1. Since the extension of (A0(B0 + C0), A1(B1 + C1)) and
(A0B0 + A0C0, A1B1 + A1C1) are equal to α(β + γ) and αβ + αγ respectively,
therefore we have α(β + γ) = αβ + αγ.

Assume that α > ι(0), β > ι(0), γ < ι(0) and β+γ > ι(0). Since β−(−γ) > 0 and
−γ > 0, therefore we have α(β−(−γ))+α(−γ) = α((β−(−γ))+(−γ)) = αβ by the
case above. Then, we have α(β + γ) + α(−γ) = αβ. Since α > ι(0) and −γ > ι(0),
therefore −α(−γ) = αγ by Lemma 7.9. Hence we have α(β + γ) = αβ + αγ.
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The other cases can be treated similarly. ¤
Proposition 7.11 (X, +,×) is a commutative field. If we identify r ∈ Q with

ι(r) ∈ X, (Q, +,×) is a subfield of (X, +,×).

8. miscellaneous properties of X

Lemma 8.1 Let α, β and γ be three cuts of Q. If α < β, then α + γ < β + γ
holds.

Proof. Put α = (A0, A1), β = (B0, B1), γ = (C0, C1). Since α < β, therefore
A0 ⊂ B0 holds. Since α + γ = (A0 + C0, A0 + C0) and β + γ = (B0 + C0, B1 + C1)
and A0 + C0 ⊂ B0 + C0, therefore we have the conclusion. ¤

Lemma 8.2 Let α, β and γ be three cuts of Q. If α < β and γ > ι(0), then we
have αγ < βγ.

Proof. We have β − α > ι(0) by Lemma 8.1. Since γ > ι(0), therefore we
have (β − α)γ > ι(0), by the definition of the product. By Lemma 7.10, we have
βγ + (−α)γ > ι(0). Hence we have −(−α)γ < βγ by Lemma 8.1. Since −(−α)γ =
αγ by Lemma 7.9, therefore we have αγ < βγ. ¤

We have proved the following.
Proposition 8.3 (X, +,×) is a ordered field.
Proposition 8.4 The field (X, +,×) is Archimedean, i.e. for any two cuts α

and β with α > ι(0) and β > ι(0), there exists a natural number n such that
ι(n)α > β.

Proof. Put α = (A0, A1) and β = (B0, B1) and let (A′
0, A

′
1) and (B′

0, B
′
1) be

their restrictions respectively. Choose a rational number a in A′
0 and a rational

number b in B′
1. Since a and b are positive rational numbers, therefore there exists

a natural number n such that na > b. Put nα = (C0, C1). Then, na is an element
of C0 and b is not an element of B0. Since na > b, therefore b is an element of C0

by Remark 1.4 (ii-a). Since b /∈ B0 and b ∈ C0, therefore we have B0 ⊂ C0 and
β < ι(n)α by Proposition 2.2 (4). ¤

9. completeness of real numbers

A member of X is called a real number. X is usually denoted by R. For a
rational number r, we identify it with ι(r).

Definition 9.1 The ordered pair Ξ = (X0, X1) of subsets of R is called a cut of
R if the following conditions are satified.

(i) X0 ̸= ∅ and X1 ̸= ∅.
(ii) X0 ∪ X1 = R or R \ {x}, where x is a real number.
(iii) If x0 ∈ X0 and x1 ∈ X1, then x0 < x1 holds. Moreover, if X0∪X1 = R\{x},

then x0 < x < x1 holds.
(iv) X0 does not have a maximum number. X1 does not have a minimum number.
Proposition 9.2 If Ξ = (X0, X1) is a cut of R, then, X0 ∪ X1 = R \ {x} holds.
Proof. Put

B0 =
∪

(A0,A1)∈X0

A0

and
B1 =

∪
(A0,A1)∈X1

A1

respectively.
We shall prove that (B0, B1) is a cut of Q.
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(i) Since X0 is not empty, therefore there exists a cut (A0, A1) ∈ X0. Since
A0 ̸= ∅, therefore B0 is not empty. Similarly, B1 is not empty.

(ii) Assume that r0 is a rational number with ι(r0) ∈ X0. Since X0 does not
have the maximum element, therefore there exists a cut of Q, (A0, A1) ∈ X0 such
that ι(r0) < (A0, A1). Since r0 ∈ A0, therefore r0 ∈ B0.

Assume that r1 is a rational number with ι(r1) ∈ X1, Since X1 does not have
the minimum element, therefore there exists a cut of Q, (A0, A1) ∈ X1 such that
ι(r1) > (A0, A1). Since r1 ∈ A1, therefore r1 ∈ B1.

Since (X0, X1) is a cut of R, therefore X0∪X1 = R or R\{x}. If ι(r) /∈ X0∪X1,
then ι(r) = x holds. Although we don’t know whether r ∈ Bi or not for i = 0, 1,
we have proved that B0 ∪ B1 = Q or Q \ {r}.

(iii) If r0 is a rational number with r0 ∈ B0, then there exists a cut of Q,
(A0, A1) ∈ X0 such that r0 ∈ A0. Then, ι(r0) < (A0, A1) holds. Therefore, we have
ι(r0) ∈ X0 by Remark 1.4 (ii-a), which is valid for a cut of R, too.

If r1 is a rational number with r1 ∈ B1, then there exists a cut of Q, (A0, A1) ∈
X1 such that r1 ∈ A1. Then, ι(r1) > (A0, A1) holds. Therefore, we have ι(r1) ∈ X1

by Remark 1.4 (ii-b), which is valid for a cut of R, too.
If r is a rational number with r /∈ B0 ∪ B1, then for any (A0, A1) ∈ X0 we have

ι(r) > (A0, A1) and for any (A0, A1) ∈ X1 we have ι(r) < (A0, A1). Therefore
ι(r) /∈ X0 ∪ X1.

Since (X0, X1) is a cut of R, therefore r0 < r1 or r0 < r < r1 holds.
(iv) Assume that b0 ∈ B0. Note that b0 is contained in some A0 such that

(A0, A1) ∈ X0. Since X0 does not have the maximum number, therefore there
exists (A′

0, A
′
1) ∈ X0 with (A′

0, A
′
1) > (A0, A1). Let b be an element of A′

0 \A0. We
have b0 < b by Remark 1.4 (ii-a”), which is valid for a cut of R, too. Since b ∈ A′

0,
therefore b ∈ B0. Hence b0 cannot be a maximum number of B0.

Assume that b1 ∈ B1. Note that b1 is contained in some A1 such that (A0, A1) ∈
X1. Since X1 does not have the minimum number, therefore there exists (A′

0, A
′
1) ∈

X1 with (A′
0, A

′
1) < (A0, A1). Let b be an element of A′

1 \ A1. We have b < b1 by
Remark 1.4 (ii-b”), which is valid for a cut of R, too. Since b ∈ A′

1, threfore b ∈ B1.
Hence b1 cannot be a minimum number of B1.

We have proved that (B0, B1) is a cut of Q.
If (B0, B1) ∈ X0, then it is a maximum element of X0, because for any element

(A0, A1) ∈ X0, we have A0 ⊂ B0.
If (B0, B1) ∈ X1, then it is a minimum element of X1, because for any element

(A0, A1) ∈ X1, we have A1 ⊂ B1.
Hence we have (B0, B1) /∈ X0 ∪ X1. We have proved that X0 ∪ X1 = R \ {x},

where x is equal to (B0, B1).
¤
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