CONSTRUCTING REAL NUMBERS BY DEDEKIND'S CUTS IN A SLIGHTLY MODIFIED WAY

IWASE, ZJUÑICI

Let \mathbb{Q} be the set of all the rational numbers. Let $\mathbb{Q}_{+}\left(\right.$resp. $\left.\mathbb{Q}_{-}\right)$be the set of all the positive (resp. negative) rational numbers.

1. Cuts of \mathbb{Q}

Definition 1.1 The ordered pair $\alpha=\left(A_{0}, A_{1}\right)$ of subsets of \mathbb{Q} is called a cut of \mathbb{Q} (or just a cut) if the following conditions are satisfied.
(i) $A_{0} \neq \emptyset$ and $A_{1} \neq \emptyset$.
(ii) $A_{0} \cup A_{1}=\mathbb{Q}$ or $\mathbb{Q} \backslash\{r\}$, where r is a rational number.
(iii) If $a_{0} \in A_{0}$ and $a_{1} \in A_{1}$, then $a_{0}<a_{1}$ holds. Moreover, if $A_{0} \cup A_{1}=\mathbb{Q} \backslash\{r\}$, then $a_{0}<r<a_{1}$ holds.
(iv) A_{0} does not have a maximum number. A_{1} does not have a minimum number.

The set of all the cuts of \mathbb{Q} is denoted by X.
Let S be a subset of \mathbb{Q}. Put $-S=\{-s \mid s \in S\}$.
Lemma 1.2 Let $\alpha=\left(A_{0}, A_{1}\right)$ be any cut. Then, $\left(-A_{1},-A_{0}\right)$ is a cut. If $A_{0} \cup A_{1}=\mathbb{Q} \backslash\{r\}$, then $\left(-A_{1}\right) \cup\left(-A_{0}\right)=\mathbb{Q} \backslash\{-r\}$.

Proof. (i) There exists an element a_{0} in A_{0}. Since $-a_{0} \in-A_{0}$, therefore, we have $-A_{0} \neq \emptyset$. Similarly, we have $-A_{1} \neq \emptyset$.
(ii) Assume that $A_{0} \cup A_{1}=\mathbb{Q}$. Let s be any rational number. Then, $-s \in A_{0}$ or $-s \in A_{1}$ holds. This means that $s \in-A_{0}$ or $s \in-A_{1}$. Hence $\left(-A_{1}\right) \cup\left(-A_{0}\right)=\mathbb{Q}$.

Assume that $A_{0} \cup A_{1}=\mathbb{Q} \backslash\{r\}$. Let s be any rational number with $s \neq-r$. Then, $-s \in A_{0}$ or $-s \in A_{1}$ holds. This means that $s \in-A_{0}$ or $s \in-A_{1}$. If $-r \in\left(-A_{1}\right) \cup\left(-A_{0}\right)$, then we have $r \in A_{0} \cup A_{1}$. This is a contradiction. Hence $\left(-A_{1}\right) \cup\left(-A_{0}\right)=\mathbb{Q} \backslash\{-r\}$.
(iii) Assume that $a_{0} \in-A_{0}$ and that $a_{1} \in-A_{1}$. Since $-a_{0} \in A_{0}$ and $-a_{1} \in A_{1}$, therefore $-a_{0}<-a_{1}$ holds. Hence we have $a_{1}<a_{0}$. Moreover, assume that $A_{0} \cup A_{1}=\mathbb{Q} \backslash\{r\}$. Since $-a_{0}<r<-a_{1}$, therefore we have $a_{1}<-r<a_{0}$.
(iv) Let a_{0} be an element of $-A_{1}$. Then, $-a_{0}$ is an element of A_{1}. Since A_{1} does not have a minimum number, therefore there exists an element a^{\prime} in A_{1} with $a^{\prime}<-a_{0}$. Since $-a^{\prime}$ is an element of $-A_{1}$ and $-a^{\prime}>a_{0}$, therefore a_{0} is not a maximum number of $-A_{1}$. We know that $-A_{1}$ does not have a maximum number. Similarly, we can prove that $-A_{0}$ does not have a minimum number.

Remark Lemma 1.2 tells that the definition of a cut in Definition 1.1 is "symmetric".

Definition 1.3 For any cut $\alpha=\left(A_{0}, A_{1}\right)$, put $-\alpha=\left(-A_{1},-A_{0}\right)$.
Remark 1.4 Assume that $\alpha=\left(A_{0}, A_{1}\right)$ is a cut.
(i-a) $A_{1}=\mathbb{Q} \backslash A_{0}$ if $\mathbb{Q} \backslash A_{0}$ does not have a minimum number. If $\mathbb{Q} \backslash A_{0}$ has a minimum number r, then $A_{1}=\mathbb{Q} \backslash\left(A_{0} \cup\{r\}\right)$. This means that A_{1} is determined by A_{0}.
(i-b) $A_{0}=\mathbb{Q} \backslash A_{1}$ if $\mathbb{Q} \backslash A_{1}$ does not have a maximum number. If $\mathbb{Q} \backslash A_{1}$ has a maximum number r, then $A_{0}=\mathbb{Q} \backslash\left(A_{1} \cup\{r\}\right)$. This means that A_{0} is determined by A_{1}.
(ii-a) If $a \in A_{0}$ and $a^{\prime} \leq a$, then $a^{\prime} \in A_{0}$ holds.
(ii-a') If $a^{\prime} \notin A_{0}$ and $a^{\prime} \leq a$, then $a \notin A_{0}$ holds.
(ii-a") If $a \in A_{0}$ and $a^{\prime} \notin A_{0}$, then $a<a^{\prime}$ holds.
(ii-b) If $a \in A_{1}$ and $a \leq a^{\prime}$, then $a^{\prime} \in A_{1}$ holds.
(ii-b') If $a^{\prime} \notin A_{1}$ and $a \leq a^{\prime}$, then $a \notin A_{1}$ holds.
(ii-b") If $a^{\prime} \in A_{1}$ and $a \notin A_{1}$, then $a<a^{\prime}$ holds.
Lemma 1.5 For two cuts $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right), A_{0} \subsetneq B_{0}$ if and only if $A_{1} \supsetneq B_{1}$.

Proof. Assume that $A_{0} \subsetneq B_{0}$. Then, there exists a rational number r such that $r \notin A_{0}$ and $r \in B_{0}$. Let x be any rational number in B_{1}. Since $\left(B_{0}, B_{1}\right)$ is a cut and $r \in B_{0}$ and $x \in B_{1}$, therefore we have $r<x$. By Remark 1.4 (ii-a') and the fact that $r \notin A_{0}$ and that $r<x$, we have $x \notin A_{0}$. If $x \notin A_{1}$, then, by Remark 1.4 (ii-b'), we have $r \notin A_{1}$. Hence $r, x \notin A_{0} \cup A_{1}$ holds. This contradicts to the definition of the cut. Therefore, $x \in A_{1}$ holds. We have proved $B_{1} \subset A_{1}$.

If $B_{1}=A_{1}$, then, by Remark 1.4 (i-b), $A_{0}=B_{0}$ holds. This is a contradiction. We have proved that $B_{1} \subsetneq A_{1}$.

The converse is proved similarly.
Lemma 1.6 Let $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$ be two cuts. If $A_{0} \subset B_{0}$ and $A_{1} \subset B_{1}$, then $\alpha=\beta$ holds.

Proof. If $A_{0} \subsetneq B_{0}$ and $A_{1} \subsetneq B_{1}$, then, there exist two rational numbers r_{0} and r_{1} with $r_{0} \in B_{0} \backslash A_{0}, r_{1} \in B_{1} \backslash A_{1}$. Since $r_{0} \in B_{0}$ and $r_{1} \in B_{1}$, therefore $r_{0}<r_{1}$. Since $r_{0} \notin A_{0}$ and $r_{1} \notin A_{1}$ and $r_{0}<r_{1}$, therefore $r_{1} \notin A_{0}$ by Remark 1.4 (ii-a') and $r_{0} \notin A_{1}$ by Remark 1.4 (ii-b'). Hense $\mathbb{Q} \backslash\left(A_{0} \cup A_{1}\right)$ contains two distinct rational numbers r_{0}, r_{1}. This is a contradiction. Therefore, we have $A_{0}=B_{0}$ or $A_{1}=B_{1}$. By Remark 1.4 (i-a) or (i-b), we have the conclusion.

2. Order on the set of all the cuts of \mathbb{Q}

Definition 2.1 For two cuts $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$, define $\alpha \leq \beta$ if $A_{0} \subset B_{0}$. Define $\alpha<\beta$ if $\alpha \leq \beta$ and $\alpha \neq \beta$.

We also use the notation $\beta \geq \alpha$ (resp. $\beta>\alpha$), which is equivalent to $\alpha \leq \beta$ (resp. $\alpha<\beta$).

Proposition 2.2 The relation \leq is a total order on X. i.e.
(1) For any cut α, we have $\alpha \leq \alpha$.
(2) For any cuts α and β, if $\alpha \leq \beta$ and $\beta \leq \alpha$, then $\alpha=\beta$ holds.
(3) For any cuts α, β and γ, if $\alpha \leq \beta$ and $\beta \leq \gamma$, then $\alpha \leq \gamma$ holds.
(4) For any cuts α and β, we have $\alpha \leq \beta$ or $\beta \leq \alpha$.

Proof. Put $\alpha=\left(A_{0}, A_{1}\right), \beta=\left(B_{0}, B_{1}\right), \gamma=\left(C_{0}, C_{1}\right)$.
(1) Since $A_{0} \subset A_{0}$, therefore we have $\alpha \leq \alpha$.
(2) Since $A_{0} \subset B_{0}$ and $B_{0} \subset A_{0}$, therefore we have $A_{0}=B_{0}$. Hence $\alpha=\beta$ by Remark 1.4 (i-a).
(3) Since $A_{0} \subset B_{0}$ and $B_{0} \subset C_{0}$, therefore we have $A_{0} \subset C_{0}$. By definition, $\alpha \leq \gamma$ holds.
(4) Assume that $\alpha \not \leq \beta$. Since $A_{0} \not \subset B_{0}$, therefore there is a rational number r with $r \in A_{0}$ and $r \notin B_{0}$. Let x be any element in B_{0}. By Remark 1.4 (ii-a"), we
have $x<r$. By Remark 1.4 (ii-a) and the fact $r \in A_{0}$, we have $x \in A_{0}$. We have proved $B_{0} \subset A_{0}$. Hence $\beta \leq \alpha$ holds.

3. Inclusion map from \mathbb{Q} to the set of all the cuts of \mathbb{Q}

Definition 3.1 Define the map $\iota: \mathbb{Q} \rightarrow X$ by $\iota(r)=(]-\infty, r[] r,,+\infty[)$.
Lemma 3.2 The map ι preserves order. i.e. if $r<s$, then $\iota(r)<\iota(s)$ holds.
Proof. Assume that $r<s$. Denote $\iota(r)$ by $\left(R_{0}, R_{1}\right)$ and $\iota(s)$ by $\left(S_{0}, S_{1}\right)$. Note that $r \in S_{0}$ and $r \notin R_{0}$. By Proposition 2.2 (4), we have $\iota(r)<\iota(s)$.

Corollary 3.3 The map ι is injective.

4. Addition of cuts of \mathbb{Q}

Let S and T be subsets of rational numbers. Put $S+T=\{s+t \mid s \in S, t \in T\}$.
Proposition 4.1 For two cuts $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$, put $C_{0}=A_{0}+B_{0}$, $C_{1}=A_{1}+B_{1}$. Then, the following holds.
(a) (i) If $x \in C_{0}$ and a rational number y satisfies $y \leq x$, then we have $y \in C_{0}$. (ii) If $x \in C_{1}$ and a rational number y satisfies $y \geq x$, then we have $y \in C_{1}$.
(b) $\left(C_{0}, C_{1}\right)$ is a cut.

Proof. (a) (i) Since $x \in C_{0}$, therefore there exist rational numbers a and b such that $a \in A_{0}$ and $b \in B_{0}$ with $c=a+b$. Put $b^{\prime}=b-(x-y)$. Since $b^{\prime} \leq b$ and $b \in B_{0}$, therefore we have $b^{\prime} \in B_{0}$ by Remark 1.4 (ii-a). Since $y=a+b^{\prime}$, therefore we have $y \in C_{0}$. (ii) can be proved similarly.
(b) (i) Since A_{0} and B_{0} are non-empty set, therefore there exist rational numbers a_{0} and b_{0} such that $a_{0} \in A_{0}$ and $b_{0} \in B_{0}$. Since $a_{0}+b_{0}$ is an element of $A_{0}+B_{0}=C_{0}$, therefore we have that C_{0} is not an empty set. Similarly, we can show that C_{1} is not empty.
(ii) Assume that $\mathbb{Q} \backslash\left(C_{0} \cup C_{1}\right)$ contains more than one rational number, x, y with $x<y$. Assume that z is a rational number with $x<z<y$. If $z \in C_{0}$, then $x<z$ contradicts to (a)(i). If $z \in C_{1}$, then $z<y$ contradicts to (a)(ii). We have proved that $x<z<y$ implies $z \notin C_{0} \cup C_{1}$.

Put $r=(y-x) / 4$. It is a positive rational number. Consider the set of rational numbers $S=\{\cdots,-4 r,-3 r,-2 r,-r, 0, r, 2 r, 3 r, 4 r, \cdots\}$. There exists an integer m such that $\{\cdots,(m-3) r,(m-2) r,(m-1) r\} \subset A_{0}$ and $\{(m+1) r,(m+2) r,(m+$ 3) $r, \cdots\} \subset A_{1}$. Similarly, there exists an integer n such that $\{\cdots,(n-3) r,(n-$ 2) $r,(n-1) r\} \subset B_{0}$ and $\{(n+1) r,(n+2) r,(n+3) r, \cdots\} \subset B_{1}$. Then, $\{\cdots,(m+n-$ $4) r,(m+n-3) r,(m+n-2) r\} \subset C_{0}$ and $\{(m+n+2) r,(m+n+3) r,(m+n+4) r, \cdots\} \subset$ C_{1}. Note that at most three elements of S, namely, $(m+n-1) r,(m+n) r$, $(m+n+1) r$, are not contained $C_{0} \cup C_{1}$. Since $y-x=4 r$, this is a contradiction.

We have shown that $\mathbb{Q} \backslash\left(C_{0} \cup C_{1}\right)$ consists of at most one rational number.
(iii) For $i=0,1$, let c_{i} be an element of C_{i}. Then there exists an element $a_{i} \in A_{i}$ and an element $b_{i} \in B_{i}$ such that $a_{i}+b_{i}=c_{i}$. Since $a_{0}<a_{1}$ and $b_{0}<b_{1}$, therefore $c_{0}<c_{1}$ holds.

Assume that $\mathbb{Q} \backslash\left(C_{0} \cup C_{1}\right)=\{r\}$. Assume that $c_{0} \in C_{0}$ and $c_{0} \geq r$. Then we have $r \in C_{0}$ by (a)(i). This is a contradiction. Therefore we have $c_{0}<r$. Assume that $c_{1} \in C_{1}$ and $r \geq c_{1}$. Then we have $r \in C_{1}$ by (a)(ii). This is a contradiction. Therefore we have $r<c_{1}$.
(iv) Let c_{0} be an element of C_{0}. There exists an element $a_{i} \in A_{i}$ and an element $b_{i} \in B_{i}$ such that $a_{i}+b_{i}=c_{i}$. Since a_{0} is not a maximum number of A_{0}, therefore there exists an element a_{0}^{\prime} of A_{0} with $a_{0}<a_{0}^{\prime}$. Since b_{0} is not a maximum number
of B_{0}, therefore there exists an element b_{0}^{\prime} of B_{0} with $b_{0}<b_{0}^{\prime}$. Since $a_{0}^{\prime}+b_{0}^{\prime}$ is an element of C_{0} and greater than $a_{0}+b_{0}=c_{0}$, therefore c_{0} cannot be a maximum number of C_{0}. Hence C_{0} does not have a maximum number. Similarly, we can prove that C_{1} does not have a minimum number.

Definition 4.2 For two cuts $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$, define $\alpha+\beta=$ $\left(A_{0}+B_{0}, A_{1}+B_{1}\right)$.

By Proposition 4.1, this is a binary operation on X.
Lemma 4.3 Let $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$ be two cuts of \mathbb{Q}. Then $\alpha+\beta=\beta+\alpha$ holds.

Proof. Since $A_{i}+B_{i}=B_{i}+A_{i}$ for $i=0,1$, therefore we have the conclusion.
Lemma 4.4 Let $\alpha=\left(A_{0}, A_{1}\right), \beta=\left(B_{0}, B_{1}\right)$ and $\gamma=\left(C_{0}, C_{1}\right)$ be three cuts of
\mathbb{Q}. Then $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$ holds.
Proof. Since $\left(A_{i}+B_{i}\right)+C_{i}=A_{i}+\left(B_{i}+C_{i}\right)$ for $i=0,1$, therefore we have the conclusion.

Lemma 4.5 The addition defined above commutes with the inclusion map ι, i.e. for any rational numbers r, s, we have $\iota(r+s)=\iota(r)+\iota(s)$.

Proof. Put $\iota(r)=\left(R_{0}, R_{1}\right), \iota(s)=\left(S_{0}, S_{1}\right), \iota(r+s)=\left(T_{0}, T_{1}\right)$. If $x \in R_{0}$ and $y \in S_{0}$, then $x<r$ and $y<s$ hold. Since $x+y<r+s$, therefore $x+y \in T_{0}$. This means that $R_{0}+S_{0} \subset T_{0}$. Similarly, we can show that $R_{1}+S_{1} \subset T_{1}$. By Lemma 1.6, we have the conclusion.

Lemma $4.6 \alpha+\iota(0)=\iota(0)+\alpha=\alpha$ holds.
Proof. Put $\left.O_{0}=\right]-\infty, 0\left[\right.$ and $\left.O_{1}=\right] 0,+\infty\left[\right.$. Note that $\iota(0)=\left(O_{0}, O_{1}\right)$. By Remark 1.4 (ii-a) and (ii-b), we have $A_{0}+O_{0} \subset A_{0}$ and $A_{1}+O_{1} \subset A_{1}$. By Lemma 1.6 and Lemma 4.3, we have the conclusion.

Lemma 4.7 For any cut $\alpha=\left(A_{0}, A_{1}\right)$, we have $\alpha+(-\alpha)=(-\alpha)+\alpha=\iota(0)$.
Proof. Recall that $\iota(0)=\left(O_{0}, O_{1}\right)$, where $\left.O_{0}=\right]-\infty, 0\left[\right.$ and $\left.O_{1}=\right] 0,+\infty[$. Let c be an element of $A_{0}+\left(-A_{1}\right)$. There exist an element $a_{0} \in A_{0}$ and an element $a_{1} \in A_{1}$ with $c=a_{0}+\left(-a_{1}\right)$. Since $a_{0}<a_{1}$, therefore $c<0$. This means that $A_{0}+\left(-A_{1}\right) \subset O_{0}$. Similarly, let c be an element of $A_{1}+\left(-A_{0}\right)$. There exist an element $a_{1} \in A_{1}$ and an element $a_{0} \in A_{0}$ with $c=a_{1}+\left(-a_{0}\right)$. Since $a_{0}<a_{1}$, therefore $c>0$. This means that $A_{1}+\left(-A_{0}\right) \subset O_{1}$. Lemma 1.6 and Lemma 4.3 completes the proof.

We have proved the following.
Proposition $4.8(X,+)$ is an abelian group. Its unit element is $\iota(0)$. The inverse of α is $-\alpha$.

5. CuTs OF \mathbb{Q}_{+}OR \mathbb{Q}_{-}

Definition 5.1 The ordered pair $\alpha=\left(A_{0}, A_{1}\right)$ of subsets of $\mathbb{Q}_{+}\left(\right.$resp. $\left.\mathbb{Q}_{-}\right)$is called a cut of $\mathbb{Q}_{+}\left(\right.$resp. $\left.\mathbb{Q}_{-}\right)$if the following conditions are satisfied.
(i) $A_{0} \neq \emptyset$ and $A_{1} \neq \emptyset$.
(ii) $A_{0} \cup A_{1}$ is $\mathbb{Q}_{+}\left(\right.$resp. $\left.\mathbb{Q}_{-}\right)$or $\mathbb{Q}_{+} \backslash\{r\}\left(\right.$ resp. $\left.\mathbb{Q}_{-} \backslash\{r\}\right)$ where r is a positive (resp. negative) rational number.
(iii) If $a_{0} \in A_{0}$ and $a_{1} \in A_{1}$, then $a_{0}<a_{1}$ holds. Moreover, if $A_{0} \cup A_{1}=\mathbb{Q}_{+} \backslash\{r\}$ (resp. $\mathbb{Q}_{-}+\backslash\{r\}$), then $a_{0}<r<a_{1}$ holds.
(iv) A_{0} does not have a maximum number. A_{1} does not have a minimum number.

Lemma 5.2 (a) Assume that $\alpha=\left(A_{0}, A_{1}\right)$ is a cut of \mathbb{Q}_{+}. Put $\left.\left.\bar{A}_{0}=\right]-\infty, 0\right] \cup A_{0}$ and $\bar{A}_{1}=A_{1}$. Then, $\left(\bar{A}_{0}, \bar{A}_{1}\right)$ is a cut of \mathbb{Q}.
(b) Assume that $\alpha=\left(A_{0}, A_{1}\right)$ is a cut of \mathbb{Q}_{-}. Put $\bar{A}_{0}=A_{0}$ and $\bar{A}_{1}=A_{1} \cup$ $\left[0,+\infty\left[\right.\right.$. Then, $\left(\bar{A}_{0}, \bar{A}_{1}\right)$ is a cut of \mathbb{Q}.

Proof. (a) (i) Since $A_{0} \subset \bar{A}_{0}$ and $A_{1}=\bar{A}_{1}$, therefore $\bar{A}_{0} \neq \emptyset$ and $\bar{A}_{1} \neq \emptyset$.
(ii) Since $A_{0} \cup A_{1}=\mathbb{Q}_{+}$or $\mathbb{Q}_{+} \backslash\{r\}$, therefore $\left.\left.\bar{A}_{0} \cup \bar{A}_{1}=\right]-\infty, 0\right] \cup A_{0} \cup A_{1}=\mathbb{Q}$ or $\mathbb{Q} \backslash\{r\}$.
(iii) Since any element in $\bar{A}_{0} \backslash A_{0}$ is smaller than any element of A_{0}, therefore we have the conclusion.
(iv) If \bar{A}_{0} has a maximum number, then it must be an element of A_{0}. This means that A_{0} has a maximum number. This is a contradiction. Since $\bar{A}_{1}=A_{1}$, therefore it does not have a minimum number.
(b) can be proved similarly.

Definition 5.3 In the situation in Lemma 5.2, we call $\left(\bar{A}_{0}, \bar{A}_{1}\right)$ the extention of $\alpha=\left(A_{0}, A_{1}\right)$.

Lemma 5.4 Assume that $\alpha=\left(A_{0}, A_{1}\right)$ is a cut of \mathbb{Q}.
(a) If $\alpha>\iota(0)$, then put $\left.\left.A_{0}^{\prime}=A_{0} \backslash\right]-\infty, 0\right]$ and $A_{1}^{\prime}=A_{1} .\left(A_{0}^{\prime}, A_{1}^{\prime}\right)$ is a cut of \mathbb{Q}_{+}.
(b) If $\alpha<\iota(0)$, then put $A_{0}^{\prime}=A_{0}$ and $A_{1}^{\prime}=A_{1} \backslash\left[0,+\infty\left[.\left(A_{0}^{\prime}, A_{1}^{\prime}\right)\right.\right.$ is a cut of \mathbb{Q}_{-}.

Proof. (a) (i) Since A_{0} contains a positive rational number, therefore A_{0}^{\prime} is not empty. A_{1}^{\prime} is not empty because $A_{1}^{\prime}=A_{1} \neq \emptyset$.
(ii) Since $A_{0} \cup A_{1}=\mathbb{Q}$ or $\mathbb{Q} \backslash\{r\}$ and $r>0$, therefore $\left.\left.A_{0}^{\prime} \cup A_{1}^{\prime}=\left(A_{0} \backslash\right]-\infty, 0\right]\right) \cup$ $\left.\left.A_{1}=\left(A_{0} \cup A_{1}\right) \backslash\right]-\infty, 0\right]=\mathbb{Q}$ or $\mathbb{Q} \backslash\{r\}$.
(iii) For $i=0,1$, assume that $a_{i} \in A_{i}^{\prime}$. Since an element of A_{i}^{\prime} is an element of A_{i} and $\alpha=\left(A_{0}, A_{1}\right)$ is a cut of \mathbb{Q}, we have $a_{0}<a_{1}$ or $a_{0}<r<a_{1}$.
(iv) Since any element of] $-\infty, 0$] is smaller than any element of A_{0}^{\prime}, therefore if there exists a maximum number of A_{0}^{\prime}, then it must be a maximum number of A_{0}. This contradicts to the fact that α is a cut of \mathbb{Q}. Therefore A_{0}^{\prime} does not have a maximum number. Since $\bar{A}_{1}=A_{1}$, therefore it does not have a minimum number.
(b) can be proved similarly.

Definition 5.5 In the situation in Lemma 5.4, we call $\left(A_{0}^{\prime}, A_{1}^{\prime}\right)$ the restriction of α to \mathbb{Q}_{+}or \mathbb{Q}_{-}.

Lemma 5.6 (A) Let $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$ be cuts of \mathbb{Q}_{+}. Let $\left(\bar{A}_{0}, \bar{A}_{1}\right)$ and $\left(\bar{B}_{0}, \bar{B}_{1}\right)$ be their extentions. Then, (a) and (b) hold.
(a) $A_{0}+B_{0}=\left(\bar{A}_{0}+\bar{B}_{0}\right) \cap \mathbb{Q}_{+}$.
(b) $\left(A_{0}+B_{0}, A_{1}+B_{1}\right)$ is a cut of \mathbb{Q}_{+}.
(B) Let $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$ be cuts of \mathbb{Q}_{-}. Let $\left(\bar{A}_{0}, \bar{A}_{1}\right)$ and $\left(\bar{B}_{0}, \bar{B}_{1}\right)$ be their extentions. Then, (a) and (b) hold.
(a) $A_{1}+B_{1}=\left(\bar{A}_{1}+\bar{B}_{1}\right) \cap \mathbb{Q}_{-}$.
(b) $\left(A_{0}+B_{0}, A_{1}+B_{1}\right)$ is a cut of \mathbb{Q}_{-}.

Proof. (A)(a) Since any element of A_{0} or B_{0} is positive, therefore we have $A_{0}+B_{0} \subset\left(\bar{A}_{0}+\bar{B}_{0}\right) \cap \mathbb{Q}_{+}$.

Let c be an element of $\left(\bar{A}_{0}+\bar{B}_{0}\right) \cap \mathbb{Q}_{+}$. Note that $c>0$ holds. There exist rational numbers a and b such that $a \in \bar{A}_{0}$ and $b \in \bar{B}_{0}$ satisfying $c=a+b$. If $a \in A_{0}$ and $b \in B_{0}$, then $c \in A_{0}+B_{0}$ holds. If $a \notin A_{0}$ and $b \notin B_{0}$, then we have $c=a+b \leq 0$. This contradicts to the fact that $c>0$. Assume that $a \in A_{0}$ and $b \notin B_{0}$. Since $b \leq 0$, therefore $a+b \leq a$ holds. Hence $a+b$ is an element of \bar{A}_{0} by Remark 1.4 (ii-a). Since $a+b>0$, therefore $a+b$ is an element of A_{0}. Let b^{\prime} be an element of B_{0}. Put $b^{\prime \prime}=\min \left(b^{\prime},(a+b) / 2\right)$. Since $0<b^{\prime \prime}<b^{\prime}$ and $b^{\prime} \in B_{0}$,
therefore $b^{\prime \prime}$ is an element of B_{0} by Remark 1.4 (ii-a). Put $a^{\prime \prime}=a+b-b^{\prime \prime}$. Since $-b^{\prime \prime} \geq-(a+b) / 2$, therefore $a^{\prime \prime} \geq(a+b) / 2>0$. Since $a^{\prime \prime}<a+b$ and $a+b \in A_{0}$, therefore $a^{\prime \prime}$ is an element of \bar{A}_{0} by Remark 1.4 (ii-a). Hence we know that $a^{\prime \prime} \in A_{0}$. Since $c=a^{\prime \prime}+b^{\prime \prime}$, therefore $c \in A_{0}+B_{0}$. The case that $a \notin A_{0}$ and $b \in B_{0}$ can be treated in the same way.

We have proved $A_{0}+B_{0} \supset\left(\bar{A}_{0}+\bar{B}_{0}\right) \cap \mathbb{Q}_{+}$.
Hence we have $A_{0}+B_{0}=\left(\bar{A}_{0}+\bar{B}_{0}\right) \cap \mathbb{Q}_{+}$.
(b) (i) For $i=0,1$, since $A_{i} \neq \emptyset$ and $B_{i} \neq \emptyset$, therefore $A_{i}+B_{i} \neq \emptyset$ holds.
(ii) In (a), we have proved that $A_{0}+B_{0}=\left(\bar{A}_{0}+\bar{B}_{0}\right) \cap \mathbb{Q}_{+}$. Since $A_{1}+B_{1}=$ $\bar{A}_{1}+\bar{B}_{1} \subset \mathbb{Q}_{+}$, therefore we have $\left(A_{0}+B_{0}\right) \cup\left(A_{1}+B_{1}\right)=\left(\left(\bar{A}_{0}+\bar{B}_{0}\right) \cup\left(\bar{A}_{1}+\bar{B}_{1}\right)\right) \cap \mathbb{Q}_{+}$. This means that $\left(A_{0}+B_{0}\right) \cup\left(A_{1}+B_{1}\right)=\mathbb{Q}_{+}$or $\mathbb{Q}_{+} \backslash\{r\}$, where r is the only rational number in $\mathbb{Q}_{+} \backslash\left(\left(\bar{A}_{0}+\bar{B}_{0}\right) \cup\left(\bar{A}_{1}+\bar{B}_{1}\right)\right)$.
(iii) For $i=0,1$, assume that $c_{i} \in A_{i}+B_{i}$. Since $c_{i} \in \bar{A}_{i}+\bar{B}_{i}$. therefore $c_{0}<c_{1}$ or $c_{0}<r<c_{1}$ holds.
(iv) By (a), if $A_{0}+B_{0}$ has a maximum number, then it is a maximum number of $\bar{A}_{0}+\bar{B}_{0}$. This contradiction shows that $A_{0}+B_{0}$ does not have a maximum number. Since $A_{1}+B_{1}=\bar{A}_{1}+\bar{B}_{1}$, therefore it does not have a minimum number.
(B) can be proved similarly.

Definition 5.7 In the situation of Lemma 5.6, define $\alpha+\beta=\left(A_{0}+B_{0}, A_{1}+B_{1}\right)$. By Lemma 5.6, we have the following.
Propositon 5.8 Let $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$ be cuts of \mathbb{Q}_{+}(resp. $\left.\mathbb{Q}_{-}\right)$. Put $\gamma=\alpha+\beta=\left(A_{0}+A_{1}, B_{0}+B_{1}\right)$. Let $\left(\bar{A}_{0}, \bar{A}_{1}\right),\left(\bar{B}_{0}, \bar{B}_{1}\right)$ and $\left(\bar{C}_{0}, \bar{C}_{1}\right)$ be the extentions of α, β and γ respectively. Then, $\left(\bar{A}_{0}+\bar{B}_{0}, \bar{A}_{1}+\bar{B}_{1}\right)=\left(\bar{C}_{0}, \bar{C}_{1}\right)$ holds.

Remark. We can say that the extension and the restriction are compatible with the addition.

6. PRODUCT OF Two cuts of \mathbb{Q}_{+}OR \mathbb{Q}_{-}

Definition 6.1 Let $\alpha=\left(A_{0}, A_{1}\right)$ be a cut of $\mathbb{Q}_{+}\left(\right.$resp. $\left.\mathbb{Q}_{-}\right)$. Then, A_{0} is called the inner (resp. outer) class of α and A_{1} is called the outer (resp. inner) class of α.

Sometimes we use the notation $A_{\text {inn }}$ (resp. $A_{\text {out }}$) to represent the inner (resp. outer) class of $\alpha=\left(A_{0}, A_{1}\right)$.

Remark. The class "nearer to 0 " is called inner.
Let S and T be subsets of \mathbb{Q}. We define that $S T=\{s t \mid s \in S, t \in T\}$.
Proposition 6.2 Let $\alpha=\left(A_{0}, A_{1}\right), \beta=\left(B_{0}, B_{1}\right)$ be cuts of \mathbb{Q}_{+}or \mathbb{Q}_{-}.
(a) If both α and β are cuts of \mathbb{Q}_{+}, then $\left(A_{0} B_{0}, A_{1} B_{1}\right)$ is a cut of \mathbb{Q}_{+}.
(b) If both α and β are cuts of \mathbb{Q}_{-}, then $\left(A_{1} B_{1}, A_{0} B_{0}\right)$ is a cut of \mathbb{Q}_{+}.
(c) If α is a cut of \mathbb{Q}_{+}and β is a cut of \mathbb{Q}_{-}, then $\left(A_{1} B_{0}, A_{0} B_{1}\right)$ is a cut of \mathbb{Q}_{-}.
(d) If α is a cut of \mathbb{Q}_{-}and β is a cut of \mathbb{Q}_{+}, then $\left(A_{0} B_{1}, A_{1} B_{0}\right)$ is a cut of \mathbb{Q}_{-}.

Remark. We call $\left(A_{0} B_{0}, A_{1} B_{1}\right)$ in (a), $\left(A_{1} B_{1}, A_{0} B_{0}\right)$ in (b), $\left(A_{1} B_{0}, A_{0} B_{1}\right)$ in (c) and $\left(A_{0} B_{1}, A_{1} B_{0}\right)$ in (d) the products of α and β.

The inner (resp. outer) class of the product is the product of the inner (resp. outer) classes.

Proof. (a) If $a \in A_{0} \cup A_{1}$ and $b \in B_{0} \cup B_{1}$, then $a>0$ and $b>0$. Hence $a b>0$ holds.

Assume that $x \in A_{0} B_{0}$ and a rational number y satisfies $0<y \leq x$. There exist rational numbers a and b such that $a \in A_{0}$ and $b \in B_{0}$ with $x=a b$. Put
$b^{\prime}=b(y / x)$. Since $0<b^{\prime} \leq b$ and $b \in B_{0}$, we have $b^{\prime} \in B_{0}$ by Remark 1.4 (ii-a). Since $y=a b^{\prime}$, therefore we have $y \in A_{0} B_{0}$.

Assume that $x \in A_{1} B_{1}$ and a rational number y satisfies $x \leq y$. There exist rational numbers a and b such that $a \in A_{0}$ and $b \in B_{0}$ with $x=a b$. Put $b^{\prime}=b(y / x)$. Since $b \leq b^{\prime}$ and $b \in B_{1}$, we have $b^{\prime} \in B_{1}$ by Remark 1.4 (ii-b). Since $y=a b^{\prime}$, therefore we have $y \in A_{1} B_{1}$.
(i) Since A_{0}, A_{1}, B_{0} and B_{1} are non-empty sets, therefore we have $A_{0} B_{0} \neq \emptyset$ and $A_{1} B_{1} \neq \emptyset$.
(ii) Assume that there exist two distinct positive rational numbers x and x^{\prime} such that $x, x^{\prime} \notin A_{0} B_{0} \cup A_{1} B_{1}$. Let $x^{\prime \prime}$ be any rational number satisfying $x<x^{\prime \prime}<x^{\prime}$. The argument before the proof of (i) shows that $x^{\prime \prime} \in A_{0} B_{0}$ implies $x \in A_{0} B_{0}$. This contradiction shows that $x^{\prime \prime} \notin A_{0} B_{0}$. Similarly, we have $x^{\prime \prime} \notin A_{1} B_{1}$. Hence we have $x^{\prime \prime} \notin A_{0} B_{0} \cup A_{1} B_{1}$.

Put $l=2 x^{\prime} /\left(x+x^{\prime}\right)$. It is a rational number. Since $0<x+x^{\prime}<2 x^{\prime}$, therefore we have $l>1$. Since $\left(x+x^{\prime}\right)^{2}>4 x x^{\prime}$, therefore we have $l^{2}<4 x^{\prime 2} / 4 x x^{\prime}=x^{\prime} / x$. Put $k=2 l /(1+l)$. It is a rational number. Since $2 l>1+l$, therefore we have $k>1$. Since $(1+l)^{2}>2 l$, therefore we have $k^{2}<4 l^{2} / 4 l=l$. Hence we have $1<k^{4}<l^{2}<x^{\prime} / x$.

Consider the set of positive rational numbers $S=\left\{\cdots, k^{-3}, k^{-2}, k^{-1}, k^{0}, k^{1}, k^{2}, k^{3}, \cdots\right\}$. There exists an integer m such that $\left\{\cdots, k^{m-3}, k^{m-2}, k^{m-1}\right\} \subset A_{0}$ and that $\left\{k^{m+1}, k^{m+2}, k^{m+3}, \cdots\right\} \subset A_{1}$. Similarly, there exists an integer n such that $\left\{\cdots, k^{n-3}, k^{n-2}, k^{n-1}\right\} \subset B_{0}$ and that $\left\{k^{n+1}, k^{n+2}, k^{n+3}, \cdots\right\} \subset B_{1}$. Then, we have $\left\{\cdots, k^{m+n-4}, k^{m+n-3}, k^{m+n-2}\right\} \subset A_{0} B_{0}$ and $\left\{k^{m+n+2}, k^{m+n+3}, k^{m+n+4}, \cdots\right\}$ $A_{1} B_{1}$. Note that at most three element of S, namelly, $k^{m+n-1}, k^{m+n}, k^{m+n+1}$, are not contained in $A_{0} B_{0} \cup A_{1} B_{1}$. Since $k^{4}<x^{\prime} / x$, this is a contradiction. We have proved that $A_{0} B_{0} \cup A_{1} B_{1}=\mathbb{Q}_{+}$or $\mathbb{Q}_{+} \backslash\{r\}$, where r is a positive rational number.
(iii) If $a_{i} \in A_{i}$ and $b_{i} \in B_{i}$ for $i=0,1$, then we have $a_{0}<a_{1}$ and $b_{0}<b_{1}$. Therefore we have $a_{0} b_{0}<a_{1} b_{1}$.

Assume that $A_{0} B_{0} \cup A_{1} B_{1}=\mathbb{Q}_{+} \backslash\{r\}$. Assumt that $c_{0} \in A_{0} B_{0}$ and $c_{0} \geq r$. Then we have $r \in A_{0} B_{0}$ by the argument before the proof of (i). This is a contradiction. Therefore we have $c_{0}<r$. Assume that $c_{1} \in A_{1} B_{1}$ and $r \geq c_{1}$. Then we have $r \in A_{1} B_{1}$ by the argument before the proof of (i). This is a contradiction. Therefore we have $r<c_{1}$.
(iv) Let c_{0} be an element of $A_{0} B_{0}$. There exist rational element $a_{0} \in A_{0}$ and $b_{0} \in B_{0}$ such that $c_{0}=a_{0} b_{0}$ holds. Since A_{0} and B_{0} do not have maximum numbers, there exist rational numbers $a_{0}^{\prime} \in A_{0}$ and $b_{0}^{\prime} \in B_{0}$ such that $a_{0}<a_{0}^{\prime}$ and $b_{0}<b_{0}^{\prime}$. Since $a_{0} b_{0}<a_{0}^{\prime} b_{0}^{\prime}$, therefore c_{0} is not a maximum number or $A_{0} B_{0}$. Hence $A_{0} B_{0}$ does not have a maximum number. Similarly, we can show that $A_{1} B_{1}$ does not have a minimum number.

The other cases (b), (c) and (d) can be proved similarly.

7. Multiplication of cuts of \mathbb{Q}

Definition 7.1 Let α, β be two cuts of \mathbb{Q}. If one of them is equal to $\iota(0)$, then define $\alpha \beta=\iota(0)$. Otherwise, choose two cuts of \mathbb{Q}_{+}or \mathbb{Q}_{-}whose extensions are equal to α and β respectively and define $\alpha \beta$ to be the extension of the product of them.

Lemma 7.2 Let α and β be two cuts of \mathbb{Q}. Then $\alpha \beta=\beta \alpha$ holds.

Proof. If $\alpha=\iota(0)$ or $\beta=\iota(0)$, then the both sides are equal to $\iota(0)$. Otherwise, let $\alpha^{\prime}, \beta^{\prime}$ be cuts of \mathbb{Q}_{+}or \mathbb{Q}_{-}whose extensions are equal to α and β respectively. Let $A_{\text {inn }}^{\prime}$ (resp. $A_{\text {out }}^{\prime}$) be the inner (resp. outer) class of α^{\prime} and let $B_{\text {inn }}^{\prime}$ (resp. $B_{o u t}^{\prime}$) be the inner (resp. outer) class of β^{\prime}. Since $A_{\text {inn }}^{\prime} B_{\text {inn }}^{\prime}=B_{\text {inn }}^{\prime} A_{\text {inn }}^{\prime}$ and $A_{\text {out }}^{\prime} B_{\text {out }}^{\prime}=B_{\text {out }}^{\prime} A_{\text {out }}^{\prime}$, we have the conclusion.

Lemma 7.3 Let α, β and γ be three cuts of \mathbb{Q}. Then $(\alpha \beta) \gamma=\alpha(\beta \gamma)$ holds.
Proof. If one of them is equal to $\iota(0)$, then the both sides are equal to $\iota(0)$. Otherwise, let $\alpha^{\prime}, \beta^{\prime}$ and γ^{\prime} be cuts of \mathbb{Q}_{+}or \mathbb{Q}_{-}whose extensions are equal to α, β and γ respectively. Let $A_{\text {inn }}^{\prime}$ (resp. $A_{\text {out }}^{\prime}$) be the inner (resp. outer) class of α and let $B_{\text {inn }}^{\prime}$ (resp. $B_{\text {out }}^{\prime}$) be the inner (resp. outer) class of β and let $C_{\text {inn }}^{\prime}$ (resp. $C_{\text {out }}^{\prime}$) be the inner (resp. outer) class of γ. Since $\left(A_{i n n}^{\prime} B_{i n n}^{\prime}\right) C_{i n n}^{\prime}=A_{i n n}^{\prime}\left(B_{i n n}^{\prime} C_{i n n}^{\prime}\right)$ and $\left(A_{\text {out }}^{\prime} B_{\text {out }}^{\prime}\right) C_{\text {out }}^{\prime}=A_{\text {out }}^{\prime}\left(B_{\text {out }}^{\prime} C_{\text {out }}^{\prime}\right)$, we have the conclusion.

Lemma 7.4 The multiplication defined above commutes with the inclusion map ι, i.e. for any rational number r, s, we have $\iota(r s)=\iota(r) \iota(s)$.

Proof. If $r=0$ or $s=0$, then the both sides are equal to $\iota(0)$. Assume that $r \neq 0$ and $s \neq 0$. If $r>0$ and $s>0$, then (] $0, r[] r,,+\infty[)$ and (] $0, s[] s,,+\infty[)$ are cuts of \mathbb{Q}_{+}whose extensions are equal to $\iota(r)$ and $\iota(s)$ respectively. Since $\mathbb{Q}_{+} \backslash(] 0, r[] 0, s[\cup] r,+\infty[] s,+\infty[)$ contains $r s$ and we know that $\iota(r) \iota(s)$ is a cut of \mathbb{Q}_{+}, therefore it must be equal to (] $0, r s[] r s,,+\infty[)$. Its extension is equal to $\iota(r s)$. Hence we have the conclusion. Other cases can be treated similarly.

Lemma 7.5 For any cut α, we have $\alpha \iota(1)=\iota(1) \alpha=\alpha$.
Proof. We shall prove that $\alpha \iota(1)=\alpha$.
If $\alpha=\iota(0)$, then the both sides are equal to $\iota(0)$.
Assume that $\alpha>\iota(0)$. Let $\left(A_{0}, A_{1}\right)$ be the cut of \mathbb{Q}_{+}whose extension is equal to α. Note that $\left(I_{0}, I_{1}\right)=(] 0,1[] 1,,+\infty[)$ is the cut of \mathbb{Q}_{+}whose extension is equal to $\iota(1)$. Let a_{0} be an element of A_{0} and i_{0} be an element of I_{0}. Since $0<a_{0} i_{0}<a_{0}$ and a_{0} is an element of A_{0}, therefore we have $a_{0} i_{0} \in A_{0}$ by Remark 1.4 (ii-a). Hence we have $A_{0} I_{0} \subset A_{0}$. Let a_{1} be an element of A_{1} and i_{1} be an element of I_{1}. Since $a_{1}<a_{1} i_{1}$ and a_{1} is an element of A_{1}, therefore we have $a_{1} i_{1} \in A_{1}$ by Remark 1.4 (ii-b). Hence we have $A_{1} I_{1} \subset A_{1}$. Apply Lemma 1.6 to the extension of $\alpha \iota(1)$ and α. Then we have $\alpha \iota(1)=\alpha$. The case $\alpha<\iota(0)$ can be proved similarly.

Lemma 7.2 shows that $\iota(1) \alpha=\alpha \iota(1)=\alpha$.
Let S be a set of rational numbers with $0 \notin S$. Put $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$.
Lemma 7.6 Let $\alpha=\left(A_{0}, A_{1}\right)$ be a cut of $\mathbb{Q}_{+}\left(\right.$resp. $\left.\mathbb{Q}_{-}\right)$. Then, $\left(A_{1}^{-1}, A_{0}^{-1}\right)$ is a cut of $\mathbb{Q}_{+}\left(\right.$resp. $\left.\mathbb{Q}_{-}\right)$and $\left(A_{0}, A_{1}\right)\left(A_{1}^{-1}, A_{0}^{-1}\right)=\iota(1)$ holds.

Proof. (i) Since $A_{0} \neq \emptyset$ and $A_{1} \neq \emptyset$, therefore $A_{1}^{-1} \neq \emptyset$ and $A_{0}^{-1} \neq \emptyset$.
(ii) If $A_{0} \cup A_{1}=\mathbb{Q}_{+}$(resp. \mathbb{Q}_{-}), then $A_{1}^{-1} \cup A_{2}^{-1}=\mathbb{Q}_{+}$(resp. \mathbb{Q}_{-}). If $A_{0} \cup A_{1}=\mathbb{Q}_{+} \backslash\{r\}$ (resp. $\left.\mathbb{Q}_{-} \backslash\{r\}\right)$ then $A_{1}^{-1} \cup A_{2}^{-1}=\mathbb{Q}_{+} \backslash\left\{r^{-1}\right\}$ (resp. $\left.\mathbb{Q}_{-} \backslash\left\{r^{-1}\right\}\right)$.
(iii) If $a_{0} \in A_{1}^{-1}$ and $a_{1} \in A_{0}^{-1}$, then $a_{0}^{-1} \in A_{1}$ and $a_{1}^{-1} \in A_{0}$. Therefore we have $a_{1}^{-1}<a_{0}^{-1}$, hence $a_{0}<a_{1}$ holds. If $A_{0} \cup A_{1}=\mathbb{Q}_{+} \backslash\{r\}$ or $\mathbb{Q}_{-} \backslash\{r\}$, then we have $a_{1}^{-1}<r^{-1}<a_{0}^{-1}$, because $a_{0}<r<a_{1}$.
(iv) Let a be an element of A_{1}^{-1}. Then, a^{-1} is an element of A_{1}. A_{1} does not have a minimum number, there exists a rational number $a^{\prime} \in A_{1}$ with $a^{\prime}<a^{-1}$. Since $a^{\prime-1} \in A_{1}^{-1}$ and $a<a^{\prime-1}$. This means that A_{1}^{-1} does not have a maximum number. Similarly, we can show that A_{0}^{-1} does not have a minimum number.

Definition 7.7 In the situation of Lemma 7.6, $\left(A_{1}^{-1}, A_{0}^{-1}\right) \in \mathbb{Q}_{+}$(resp. \mathbb{Q}_{-}) is called the inverse of $\alpha \in \mathbb{Q}_{+}$(resp. \mathbb{Q}_{-}).

Let α be a cut of \mathbb{Q} which is not equal to $\iota(0)$. Define α^{-1} to be the extention of the inverse of the restriction of α. It is a cut of \mathbb{Q} and is called the inverse of α.

Proposition $7.8(X \backslash\{0\}, \times)$ is an abelian group. Its unit element if $\iota(1)$. The inverse of α is α^{-1}. (The symbol " \times " means the mulplication.)

Lemma 7.9 Let α, β be two cuts of \mathbb{Q} with $\alpha>\iota(0)$ and $\beta>\iota(0)$. Then, $-\alpha \beta=\alpha(-\beta)$ holds.

Proof. Let $\left(A_{0}, B_{0}\right)$ and $\left(B_{0}, B_{1}\right)$ be the restriction of α and β respectively. They are the cuts of \mathbb{Q}_{+}. Since $\alpha \beta$ is the extension $\left(A_{0} B_{0}, A_{1} B_{1}\right)$, therefore $-\alpha \beta$ is the extention of $\left(-\left(A_{1} B_{1}\right),-\left(A_{0} B_{0}\right)\right)$. Since the restriction of $-\beta$ is $\left(-B_{1},-B_{0}\right)$, therefore $\alpha(-\beta)$ is the extension of $\left(A_{1}\left(-B_{1}\right), A_{0}\left(-B_{0}\right)\right)$. Since $\left(-\left(A_{1} B_{1}\right),-\left(A_{0} B_{0}\right)\right)$ is equal to $\left(A_{1}\left(-B_{1}\right), A_{0}\left(-B_{0}\right)\right)$, therefore we have the conclusion.

Lemma 7.9 Let α, β be two cuts of \mathbb{Q}. Then, $-\alpha \beta=\alpha(-\beta)$ holds.
Proof. If $\alpha=\iota(0)$ or $\beta=\iota(0)$, then the both sides are equal to $\iota(0)$.
Assume that $\alpha>\iota(0)$ and $\beta>\iota(0)$. Let $\left(A_{0}, A_{1}\right)$ and $\left(B_{0}, B_{1}\right)$ be the restriction of α and β respectively. They are cuts of \mathbb{Q}_{+}. Since $\alpha \beta$ is the extension $\left(A_{0} B_{0}, A_{1} B_{1}\right)$, therefore $-\alpha \beta$ is the extention of $\left(-\left(A_{1} B_{1}\right),-\left(A_{0} B_{0}\right)\right)$. Since the restriction of $-\beta$ is $\left(-B_{1},-B_{0}\right)$, therefore $\alpha(-\beta)$ is the extension of $\left(A_{1}\left(-B_{1}\right), A_{0}\left(-B_{0}\right)\right)$. Since $\left(-\left(A_{1} B_{1}\right),-\left(A_{0} B_{0}\right)\right)$ is equal to $\left(A_{1}\left(-B_{1}\right), A_{0}\left(-B_{0}\right)\right)$, therefore we have the conclusion.

Assume that $\alpha>\iota(0)$ and $\beta<\iota(0)$. Since $-\beta>0$, therefore we have $-\alpha(-\beta)=$ $\alpha(-(-\beta))$ by the case above. Hence we have $-\alpha \beta=\alpha(-\beta)$.

Assume that $\alpha<\iota(0)$ and $\beta<\iota(0)$. Let $\left(A_{0}, A_{1}\right)$ and $\left(B_{0}, B_{1}\right)$ be the restriction of α and β respectively. They are cuts of \mathbb{Q}_{-}. Since $\alpha \beta$ is the extension $\left(A_{1} B_{1}, A_{0} B_{0}\right)$, therefore $-\alpha \beta$ is the extention of $\left(-\left(A_{0} B_{0}\right),-\left(A_{1} B_{1}\right)\right)$. Since the restriction of $-\beta$ is $\left(-B_{1},-B_{0}\right)$, therefore $\alpha(-\beta)$ is the extension of $\left(A_{0}\left(-B_{0}\right), A_{1}\left(-B_{1}\right)\right)$. Since $\left(-\left(A_{0} B_{0}\right),-\left(A_{1} B_{1}\right)\right)$ is equal to $\left(A_{0}\left(-B_{0}\right), A_{1}\left(-B_{1}\right)\right)$, therefore we have the conclusion.

Assume that $\alpha<\iota(0)$ and $\beta>\iota(0)$. Since $-\beta<0$, therefore we have $-\alpha(-\beta)=$ $\alpha(-(-\beta))$ by the case above. Hence we have $-\alpha \beta=\alpha(-\beta)$.

Lemma 7.10 Let α, β and γ be three cuts of \mathbb{Q}. Then $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$ and $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$ hold.

Proof. First, we prove $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.
If $\alpha=\iota(0)$, then the both sides are equal to $\iota(0)$.
If $\alpha \neq \iota(0)$ and $\beta+\gamma=\iota(0)$, then the left hand side is equal to $\iota(0)$. If $\beta=\gamma=\iota(0)$, then the right hand side is equal to $\iota(0)$, too.

Assume that $\alpha>\iota(0)$ and $\beta>\iota(0)$ and $\beta+\gamma=\iota(0)$. Since $\gamma=-\beta$, therefore we have $-\alpha \beta=\alpha \gamma$ by Lemma 7.9. Hence, we have $\alpha \beta+\alpha \gamma=\iota(0)$. Since $\alpha(\beta+\gamma)=\iota(0)$, therefore we have $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.

Assume that $\alpha>\iota(0)$ and $\beta+\gamma>\iota(0)$. If $\beta>\iota(0)$ and $\gamma>\iota(0)$, then let $\left(A_{0}, A_{1}\right),\left(B_{0}, B_{1}\right)$ and $\left(C_{0}, C_{1}\right)$ be cuts of \mathbb{Q}_{+}whose extensions are equal to α, β and γ respectively. Then, we have $A_{0}\left(B_{0}+C_{0}\right)=A_{0} B_{0}+A_{0} C_{0}$ and $A_{1}\left(B_{1}+\right.$ $\left.C_{1}\right)=A_{1} B_{1}+A_{1} C_{1}$. Since the extension of $\left(A_{0}\left(B_{0}+C_{0}\right), A_{1}\left(B_{1}+C_{1}\right)\right)$ and $\left(A_{0} B_{0}+A_{0} C_{0}, A_{1} B_{1}+A_{1} C_{1}\right)$ are equal to $\alpha(\beta+\gamma)$ and $\alpha \beta+\alpha \gamma$ respectively, therefore we have $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.

Assume that $\alpha>\iota(0), \beta>\iota(0), \gamma<\iota(0)$ and $\beta+\gamma>\iota(0)$. Since $\beta-(-\gamma)>0$ and $-\gamma>0$, therefore we have $\alpha(\beta-(-\gamma))+\alpha(-\gamma)=\alpha((\beta-(-\gamma))+(-\gamma))=\alpha \beta$ by the case above. Then, we have $\alpha(\beta+\gamma)+\alpha(-\gamma)=\alpha \beta$. Since $\alpha>\iota(0)$ and $-\gamma>\iota(0)$, therefore $-\alpha(-\gamma)=\alpha \gamma$ by Lemma 7.9. Hence we have $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.

The other cases can be treated similarly.
Proposition $7.11(X,+, \times)$ is a commutative field. If we identify $r \in \mathbb{Q}$ with $\iota(r) \in X,(\mathbb{Q},+, \times)$ is a subfield of $(X,+, \times)$.

8. miscellaneous properties of X

Lemma 8.1 Let α, β and γ be three cuts of \mathbb{Q}. If $\alpha<\beta$, then $\alpha+\gamma<\beta+\gamma$ holds.

Proof. Put $\alpha=\left(A_{0}, A_{1}\right), \beta=\left(B_{0}, B_{1}\right), \gamma=\left(C_{0}, C_{1}\right)$. Since $\alpha<\beta$, therefore $A_{0} \subset B_{0}$ holds. Since $\alpha+\gamma=\left(A_{0}+C_{0}, A_{0}+C_{0}\right)$ and $\beta+\gamma=\left(B_{0}+C_{0}, B_{1}+C_{1}\right)$ and $A_{0}+C_{0} \subset B_{0}+C_{0}$, therefore we have the conclusion.

Lemma 8.2 Let α, β and γ be three cuts of \mathbb{Q}. If $\alpha<\beta$ and $\gamma>\iota(0)$, then we have $\alpha \gamma<\beta \gamma$.

Proof. We have $\beta-\alpha>\iota(0)$ by Lemma 8.1. Since $\gamma>\iota(0)$, therefore we have $(\beta-\alpha) \gamma>\iota(0)$, by the definition of the product. By Lemma 7.10, we have $\beta \gamma+(-\alpha) \gamma>\iota(0)$. Hence we have $-(-\alpha) \gamma<\beta \gamma$ by Lemma 8.1. Since $-(-\alpha) \gamma=$ $\alpha \gamma$ by Lemma 7.9, therefore we have $\alpha \gamma<\beta \gamma$.

We have proved the following.
Proposition $8.3(X,+, \times)$ is a ordered field.
Proposition 8.4 The field $(X,+, \times)$ is Archimedean, i.e. for any two cuts α and β with $\alpha>\iota(0)$ and $\beta>\iota(0)$, there exists a natural number n such that $\iota(n) \alpha>\beta$.

Proof. Put $\alpha=\left(A_{0}, A_{1}\right)$ and $\beta=\left(B_{0}, B_{1}\right)$ and let $\left(A_{0}^{\prime}, A_{1}^{\prime}\right)$ and $\left(B_{0}^{\prime}, B_{1}^{\prime}\right)$ be their restrictions respectively. Choose a rational number a in A_{0}^{\prime} and a rational number b in B_{1}^{\prime}. Since a and b are positive rational numbers, therefore there exists a natural number n such that $n a>b$. Put $n \alpha=\left(C_{0}, C_{1}\right)$. Then, $n a$ is an element of C_{0} and b is not an element of B_{0}. Since $n a>b$, therefore b is an element of C_{0} by Remark 1.4 (ii-a). Since $b \notin B_{0}$ and $b \in C_{0}$, therefore we have $B_{0} \subset C_{0}$ and $\beta<\iota(n) \alpha$ by Proposition 2.2 (4).

9. COMPLETENESS OF REAL NUMBERS

A member of X is called a real number. X is usually denoted by \mathbb{R}. For a rational number r, we identify it with $\iota(r)$.

Definition 9.1 The ordered pair $\Xi=\left(X_{0}, X_{1}\right)$ of subsets of \mathbb{R} is called a cut of \mathbb{R} if the following conditions are satified.
(i) $X_{0} \neq \emptyset$ and $X_{1} \neq \emptyset$.
(ii) $X_{0} \cup X_{1}=\mathbb{R}$ or $\mathbb{R} \backslash\{x\}$, where x is a real number.
(iii) If $x_{0} \in X_{0}$ and $x_{1} \in X_{1}$, then $x_{0}<x_{1}$ holds. Moreover, if $X_{0} \cup X_{1}=\mathbb{R} \backslash\{x\}$, then $x_{0}<x<x_{1}$ holds.
(iv) X_{0} does not have a maximum number. X_{1} does not have a minimum number.

Proposition 9.2 If $\Xi=\left(X_{0}, X_{1}\right)$ is a cut of \mathbb{R}, then, $X_{0} \cup X_{1}=\mathbb{R} \backslash\{x\}$ holds.
Proof. Put

$$
B_{0}=\bigcup_{\left(A_{0}, A_{1}\right) \in X_{0}} A_{0}
$$

and

$$
B_{1}=\bigcup_{\left(A_{0}, A_{1}\right) \in X_{1}} A_{1}
$$

respectively.
We shall prove that $\left(B_{0}, B_{1}\right)$ is a cut of \mathbb{Q}.
(i) Since X_{0} is not empty, therefore there exists a cut $\left(A_{0}, A_{1}\right) \in X_{0}$. Since $A_{0} \neq \emptyset$, therefore B_{0} is not empty. Similarly, B_{1} is not empty.
(ii) Assume that r_{0} is a rational number with $\iota\left(r_{0}\right) \in X_{0}$. Since X_{0} does not have the maximum element, therefore there exists a cut of $\mathbb{Q},\left(A_{0}, A_{1}\right) \in X_{0}$ such that $\iota\left(r_{0}\right)<\left(A_{0}, A_{1}\right)$. Since $r_{0} \in A_{0}$, therefore $r_{0} \in B_{0}$.

Assume that r_{1} is a rational number with $\iota\left(r_{1}\right) \in X_{1}$, Since X_{1} does not have the minimum element, therefore there exists a cut of $\mathbb{Q},\left(A_{0}, A_{1}\right) \in X_{1}$ such that $\iota\left(r_{1}\right)>\left(A_{0}, A_{1}\right)$. Since $r_{1} \in A_{1}$, therefore $r_{1} \in B_{1}$.

Since $\left(X_{0}, X_{1}\right)$ is a cut of \mathbb{R}, therefore $X_{0} \cup X_{1}=\mathbb{R}$ or $\mathbb{R} \backslash\{x\}$. If $\iota(r) \notin X_{0} \cup X_{1}$, then $\iota(r)=x$ holds. Although we don't know whether $r \in B_{i}$ or not for $i=0,1$, we have proved that $B_{0} \cup B_{1}=\mathbb{Q}$ or $\mathbb{Q} \backslash\{r\}$.
(iii) If r_{0} is a rational number with $r_{0} \in B_{0}$, then there exists a cut of \mathbb{Q}, $\left(A_{0}, A_{1}\right) \in X_{0}$ such that $r_{0} \in A_{0}$. Then, $\iota\left(r_{0}\right)<\left(A_{0}, A_{1}\right)$ holds. Therefore, we have $\iota\left(r_{0}\right) \in X_{0}$ by Remark 1.4 (ii-a), which is valid for a cut of \mathbb{R}, too.

If r_{1} is a rational number with $r_{1} \in B_{1}$, then there exists a cut of $\mathbb{Q},\left(A_{0}, A_{1}\right) \in$ X_{1} such that $r_{1} \in A_{1}$. Then, $\iota\left(r_{1}\right)>\left(A_{0}, A_{1}\right)$ holds. Therefore, we have $\iota\left(r_{1}\right) \in X_{1}$ by Remark 1.4 (ii-b), which is valid for a cut of \mathbb{R}, too.

If r is a rational number with $r \notin B_{0} \cup B_{1}$, then for any $\left(A_{0}, A_{1}\right) \in X_{0}$ we have $\iota(r)>\left(A_{0}, A_{1}\right)$ and for any $\left(A_{0}, A_{1}\right) \in X_{1}$ we have $\iota(r)<\left(A_{0}, A_{1}\right)$. Therefore $\iota(r) \notin X_{0} \cup X_{1}$.

Since (X_{0}, X_{1}) is a cut of \mathbb{R}, therefore $r_{0}<r_{1}$ or $r_{0}<r<r_{1}$ holds.
(iv) Assume that $b_{0} \in B_{0}$. Note that b_{0} is contained in some A_{0} such that $\left(A_{0}, A_{1}\right) \in X_{0}$. Since X_{0} does not have the maximum number, therefore there exists $\left(A_{0}^{\prime}, A_{1}^{\prime}\right) \in X_{0}$ with $\left(A_{0}^{\prime}, A_{1}^{\prime}\right)>\left(A_{0}, A_{1}\right)$. Let b be an element of $A_{0}^{\prime} \backslash A_{0}$. We have $b_{0}<b$ by Remark 1.4 (ii-a"), which is valid for a cut of \mathbb{R}, too. Since $b \in A_{0}^{\prime}$, therefore $b \in B_{0}$. Hence b_{0} cannot be a maximum number of B_{0}.

Assume that $b_{1} \in B_{1}$. Note that b_{1} is contained in some A_{1} such that $\left(A_{0}, A_{1}\right) \in$ X_{1}. Since X_{1} does not have the minimum number, therefore there exists $\left(A_{0}^{\prime}, A_{1}^{\prime}\right) \in$ X_{1} with $\left(A_{0}^{\prime}, A_{1}^{\prime}\right)<\left(A_{0}, A_{1}\right)$. Let b be an element of $A_{1}^{\prime} \backslash A_{1}$. We have $b<b_{1}$ by Remark 1.4 (ii-b"), which is valid for a cut of \mathbb{R}, too. Since $b \in A_{1}^{\prime}$, threfore $b \in B_{1}$. Hence b_{1} cannot be a minimum number of B_{1}.

We have proved that $\left(B_{0}, B_{1}\right)$ is a cut of \mathbb{Q}.
If $\left(B_{0}, B_{1}\right) \in X_{0}$, then it is a maximum element of X_{0}, because for any element $\left(A_{0}, A_{1}\right) \in X_{0}$, we have $A_{0} \subset B_{0}$.

If $\left(B_{0}, B_{1}\right) \in X_{1}$, then it is a minimum element of X_{1}, because for any element $\left(A_{0}, A_{1}\right) \in X_{1}$, we have $A_{1} \subset B_{1}$.

Hence we have $\left(B_{0}, B_{1}\right) \notin X_{0} \cup X_{1}$. We have proved that $X_{0} \cup X_{1}=\mathbb{R} \backslash\{x\}$, where x is equal to $\left(B_{0}, B_{1}\right)$.

Department of Mathematics, Faculty of Science, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan.

E-mail address: iwase@kenroku.kanazawa-u.ac.jp

