1966年京大理 5 旧文 5 新文 4 旧共通

$$f(x) = x^3 - 6x^2 + 8$$
 $f'(x) = 3x^2 - 12x = 3x(x - 4)$

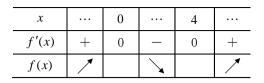
f(x) の増減は右の通り。

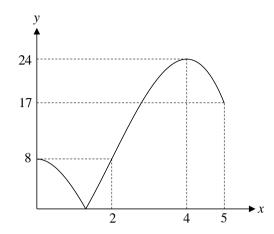
f(0)=8, f(4)=-24 であるから、 $0 \le x \le 5$ の範囲で y=|f(x)| のグラフを描くと、右図の通り。

これより

$$0 \le r \le 2$$
 のとき $M(r) = 8$
 $2 \le r \le 4$ のとき $M(r) = -f(r) = -r^3 + 6r^2 - 8$
 $4 \le r \le 5$ のとき $M(r) = 24$

であるから





$$\int_{0}^{5} M(r)dr = 8 \int_{0}^{2} dr + \int_{2}^{4} (-r^{3} + 6r^{2} - 8)dr + 24 \int_{4}^{5} dr = 8[r]_{0}^{2} + \left[-\frac{r^{4}}{4} + 2r^{3} - 8r \right]_{2}^{4} + 24[r]_{4}^{5}$$

$$= 40 + (-64 + 128 - 32 + 4 - 16 + 16) = 76 \quad \dots \quad (48)$$

1966 年京大文 5 旧

(i)

$$2x^2 + y < 0$$
, $y < 0$ $y < -2x^2 \le 0$ $\emptyset \ge 3$
 $-2x^2 - y = 8 + y$ $2y = -2x^2 - 8$ $\therefore y = -x^2 - 4$

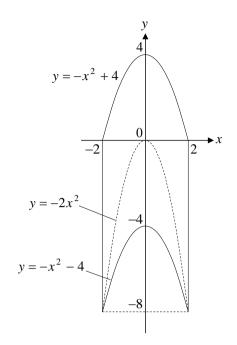
$$2x^{2} + y \ge 0$$
, $y < 0$ $-2x^{2} \le y < 0$ $\emptyset \ge 3$
 $2x^{2} + y = 8 + y$ $x^{2} = 4$ $\therefore x = \pm 2$

$$2x^{2} + y \ge 0, y \ge 0$$
 $-2x^{2} \le 0 \le y$ $0 \ge 3$
 $2x^{2} + y = 8 - y$ $2y = -2x^{2} + 8$ $\therefore y = -x^{2} + 4$

グラフは右図の通り。

(ii)

このグラフで囲まれた図形の面積は 4×8=32



このグラフで囲まれた範囲のうち、 $y \ge 0$ の部分の面積は $2\int_0^2 (-x^2+4)dx = 2\left[-\frac{x^3}{3}+4x\right]_0^2 = \frac{32}{3}$

 $-4 \le y \le 0$ の部分の面積は $4 \times 4 = 16$ $y \le -4$ の部分の面積は $16 - \frac{32}{3} = \frac{16}{3}$

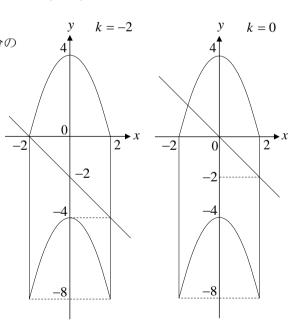
このグラフで囲まれた図形のうち、直線 y=-x+k より上の部分の面積を S_1 、直線 y=-x+k より下の部分の面積を S_2 とする。

 $k = -2 \mathcal{O}$

$$S_1 = 8 + \frac{32}{3}$$
, $S_2 = 8 + \frac{16}{3}$ であるから、 $S_1 > S_2$ である。

k=0のとき

 S_2 のうち、 $y \le 0$ の部分の面積は $16-2+\frac{16}{3}=19+\frac{1}{3}>16$ であるから、 $S_1 < S_2$ である。



k を -2 から 0 まで動かすと、 S_1 , S_2 は連続的に変化し、 S_1 は減少、 S_2 は増加する。

k=-2 と k=0 で、 S_1 と S_2 の大小関係が逆転しているので、-2 < k < 0 の範囲に、 $S_1 = S_2$ となる k が存在する。以上により、題意は示された。(証明終)