2009年京大理甲5 文5 共通

n=1のとき p は素数であるから、p!がp で割り切れる回数は1回。

$n \ge 2$ のとき

 p^n 個の自然数1, 2, …, p^n-1 , p^n のうち、p の倍数は、p, 2p, …, $(p^{n-1}-1)p$, p^n の p^{n-1} 個。 p^2 の倍数は、 p^2 , $2p^2$, …, $(p^{n-2}-1)p^2$, p^n の p^{n-2} 個。以下同様に、 p^k ($1 \le k \le n$) の倍数は p^{n-k} 個である。

 p^n 個の自然数 $1, 2, \cdots, p^n-1, p^n$ のうち、pの倍数であるが、 p^2 の倍数ではないものの個数は $p^{n-1}-p^{n-2}$ p^2 の倍数であるが、 p^3 の倍数ではないものの個数は $p^{n-2}-p^{n-3}$ 以下同様に、 p^k ($1 \le k \le n-1$)の倍数であるが、 p^{k+1} の倍数ではないものの個数は $p^{n-k}-p^{n-k-1}$ p^n の倍数は、 p^n のみで、1個。

 p^n 個の自然数1, 2, …, p^n-1 , p^n のうち、

素因数 p をちょうど k 個 $(1 \le k \le n-1)$ 持つものの個数は、 $p^{n-k} - p^{n-k-1}$ で与えられる。 $(p^n)!$ が p で割り切れる回数は、 $(p^n)!$ に含まれる素因数 p の個数に等しいから、求める回数は

$$1 \times (p^{n-1} - p^{n-2}) + 2 \times (p^{n-2} - p^{n-3}) + 3 \times (p^{n-3} - p^{n-4}) + \dots + (n-2) \times (p^2 - p) + (n-1) \times (p-1) + n$$

$$= p^{n-1} + p^{n-2} + \dots + p^2 + p + 1 = \frac{p^n - 1}{p - 1} \quad \dots \quad (\stackrel{\scriptstyle \triangle}{\cong})$$

これはn=1でも成立する。