2013年京大理4

$$f(x) = \cos x + \frac{\sqrt{3}}{4}x^2$$
とする。 $f(x)$ は偶関数であるから、 $0 \le x \le \frac{\pi}{2}$ で考える。

$$f'(x) = -\sin x + \frac{\sqrt{3}}{2}x$$
 $f''(x) = -\cos x + \frac{\sqrt{3}}{2}$

f'(x) の増減は、右の通り。

$$\frac{\pi}{6} < x < \frac{\pi}{2}$$
 において $f'(x) = 0$ となる x がただ 1 つ存在する。

x	0		$\frac{\pi}{6}$		$\frac{\pi}{2}$
f''(x)		_	0	+	
f'(x)		\ <u></u>		/	

これを $x=\alpha$ とすると、f(x)の増減は、右の通り。

$$f(x)$$
の最大値を与える x は、 $x=0$ か $x=\frac{\pi}{2}$ である。

$f(0) = 1$ 、 $f\left(\frac{\pi}{2}\right) = \frac{\sqrt{3}}{16}\pi^2 > \frac{1.7 \times 3.1^2}{16} = \frac{16.337}{16} > 1$ であるから
求める最大値は $\therefore f\left(\pm \frac{\pi}{2}\right) = \frac{\sqrt{3}}{16}\pi^2 \cdots$ (答)

x	0	•••	α	•••	$\frac{\pi}{2}$
f'(x)	0	_	0	+	
f(x)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		/	