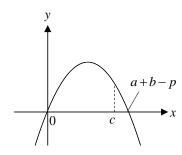
1962年京大理4文4共通

 $f(x) = x(x-a)(b-x) - (px^2 - qx)$ としたとき、 $-\infty < x \le c$ において $f(x) \ge 0$ となる条件を考える。 $f(x) = x\{(x-a)(b-x) - px + q\} = x\{-x^2 + (a+b-p)x + q - ab\}$ であり、 $g(x) = -x^2 + (a+b-p)x + q - ab$ とすると、 $-\infty < x \le 0$ のとき $g(x) \le 0$ 、 $0 \le x \le c$ のとき $g(x) \ge 0$ である。 したがって、x = 0 の前後で g(x) の符号が変わるから g(0) = q - ab = 0 $\therefore q = ab$

q=abのとき、 $g(x)=-x^2+(a+b-p)x=x(a+b-p-x)$ が、 $-\infty < x \le 0$ において $g(x) \le 0$ となるには、 $a+b-p \ge 0$ でなければならない。 a+b-p=0 であるとき、 $g(x)=-x^2 \le 0$ であり、 $0 \le x \le c$ において $g(x) \ge 0$ と ならないから、不適。したがって、a+b-p>0 である。



a+b-p>0の条件下で、 $0 < x \le c$ において $g(x) \ge 0$ となる条件は $c \le a+b-p$ $\therefore 0 このような <math>p$ が存在するためには、a+b-c>0、c < a+b でなければならない。

以上により

c < a+bであれば、 $-\infty < x \le c$ において $f(x) \ge 0$ となる正の定数 p, q を求めることができる。 0 を満たすように <math>p を定め、なおかつ q = ab とすればよい。 $c \ge a+b$ であれば、正の定数 p, q を求めることができない。