1963 年京大理 4 文 4 共通

(1)

時刻 $t(0 \le t \le 1)$ において、点D, E, F は、それぞれ辺AB, BC, CA を、t:(1-t) に内分する。原点Oを基準とした位置ベクトルを考えると

$$\overrightarrow{OD} = (1-t)\overrightarrow{OA} + t\overrightarrow{OB}$$
 $\overrightarrow{OE} = (1-t)\overrightarrow{OB} + t\overrightarrow{OC}$ $\overrightarrow{OF} = (1-t)\overrightarrow{OC} + t\overrightarrow{OA}$

このとき、 $\triangle DEF$ の重心は

$$\frac{1}{3}(\overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF}) = \frac{1-t}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}) + \frac{t}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}) = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$$

 \triangle *DEF* の重心は、時刻 t に関わらず、 \triangle *ABC*の重心に一致する。 すなわち、 $0 \le t \le 1$ において、 \triangle *DEF* の重心は動かない。(証明終)

 $\triangle ABC$ の面積をSとする。

AD=tAB, AF=(1-t)AC であるから、 \triangle ADF の面積は、t(1-t)S である。同様に、 \triangle BDE $\ge \triangle$ CEF の面積も、t(1-t)S である。

$$\triangle DEF$$
の面積は $S - 3t(1-t)S = (3t^2 - 3t + 1)S = \left\{3\left(t - \frac{1}{2}\right)^2 + \frac{1}{4}\right\}S$

 $t = \frac{1}{2}$ のとき、最小値 $\frac{S}{4}$ をとるから、 \triangle DEF の面積の最小値は、 \triangle ABC の面積の $\frac{1}{4}$ 倍。 ……(答)

