1976 年京大文 5

(i)の形の数列として、

(1)
$$a_n = an + b = a \times n + b \times 1$$
 (2) $a_n = an^2 + b = a \times n \times n + b$ (3) $a_n = an + \frac{b}{n} = a \times n + b \div n$

(ii)の形の数列として、

(4)
$$a_n = an^n + b = n^n \times a + b$$
 (5) $a_n = 2^n a + b = 2^n \times a + b$ (6) $a_n = 3^n a + b = 3^n \times a + b$ を、それぞれ考える。

 $a_1 = 2$, $a_2 = 3$ となるように、定数a, bを定めると

(1)
$$a+b=2$$
, $2a+b=3$: $a=b=1$ (2) $a+b=2$, $4a+b=3$: $a=\frac{1}{3}$, $b=\frac{5}{3}$

(3)
$$a+b=2$$
, $2a+\frac{b}{2}=3$ $\therefore a=\frac{4}{3}$, $b=\frac{2}{3}$ (4) $a+b=2$, $4a+b=3$ $\therefore a=\frac{1}{3}$, $b=\frac{5}{3}$

(5)
$$2a+b=2$$
, $4a+b=3$ $\therefore a=\frac{1}{2}$, $b=1$ (6) $3a+b=2$, $9a+b=3$ $\therefore a=\frac{1}{6}$, $b=\frac{3}{2}$

以上により

$$a_n = n+1, \frac{1}{3}n^2 + \frac{5}{3}, \frac{4}{3}n + \frac{2}{3n}, \frac{1}{3}n^n + \frac{5}{3}, 2^{n-1} + 1, \frac{1}{2} \cdot 3^{n-1} + \frac{3}{2} \cdot \cdots \cdot (\stackrel{\triangle}{\cong})$$