1993年京大後期理 11 文 11 共通

$$\frac{f(x)}{x^3 - x} = 1 + \frac{ax^2 + (b+1)x + c}{x^3 - x} = 1 + \frac{(x-1)\{ax + (a+b+1)\} + a + b + c + 1}{x^3 - x} = 1 + \frac{ax + (a+b+1)}{x^2 + x} + \frac{a+b+c+1}{x^3 - x}$$

(1) より、
$$\lim_{x\to 1} \frac{f(x)}{x^3-x}$$
 が有限値に収束するためには $a+b+c+1=0$ ∴ $c=-a-b-1$

$$\supset \mathcal{O} \succeq \stackrel{*}{\succeq} \lim_{x \to 1} \frac{f(x)}{x^3 - x} = 1 + \frac{2a + b + 1}{2} = 1 \quad 2a + b + 1 = 0 \quad \therefore b = -2a - 1$$

$$b = -2a - 1$$
, $c = a$ と表せるので $f(x) = x^3 + ax^2 - (2a + 1)x + a$ $f'(x) = 3x^2 + 2ax - (2a + 1)$

$$f(0) = a, f(1) = 0$$
 より、 l の式は、 $y = -ax + a$ である。

$$\int_0^1 \left\{ f(x) + ax - a \right\} dx = \int_0^1 \left\{ x^3 + ax^2 - (a+1)x \right\} dx = \left[\frac{x^4}{4} + \frac{a}{3}x^3 - \frac{a+1}{2}x^2 \right]_0^1 = -\frac{1}{6}a - \frac{1}{4}$$

条件(3) より、
$$\left|-\frac{1}{6}a-\frac{1}{4}\right| = \left|\frac{1}{6}a+\frac{1}{4}\right| = \frac{3}{4}$$
 であるから $\frac{1}{6}a+\frac{1}{4}=\pm\frac{3}{4}$ ∴ $a=3,-6$

条件(2)より、
$$f'(0) = -2a - 1 < 0$$
であるから

$$a=3$$
のとき $f'(0)=-7<0$ $a=-6$ のとき $f'(0)=11>0$ 適するのは $\therefore a=3$

以上により :
$$a=3, b=-7, c=3$$
 ······(答)