1995 年京大理 3

(1)

 $y = x^3$ 上の点 (t, t^3) における接線は $y = 3t^2(x-t) + t^3 = 3t^2x - 2t^3$ これがP(p, q) を通るとき $q = 3t^2p - 2t^3$ $2t^3 - 3pt^2 + q = 0$ ① 三次方程式①が、相違なる 3 つの実数解を持つ。

それらの実数解は、いずれも $t^3 = at^2 + bt + c$ を満たすので、①に代入すると $2(at^2 + bt + c) - 3pt^2 + q = 0$ $(2a - 3p)t^2 + 2bt + 2c + q = 0$ ____②

②を二次方程式とすると、相違なる実数解が3つ存在することになり、不合理である。 2a-3p=0 として、②が一次方程式としてもやはり不合理である。

結局、②のすべての係数が0であるから $\therefore a = \frac{3}{2}p, b = 0, c = -\frac{1}{2}q$ (証明終)

(2)

$$t^3 = \frac{3}{2}pt^2 - \frac{1}{2}q$$
 とすると $\therefore 2t^3 - 3pt^2 + q = 0$ ①と同じである。

 $q=-2t^3+3pt^2$ が、相違なる 3 つの実数解を持つ条件を考える。 $f(t)=-2t^3+3pt^2$ とすると $f'(t)=-6t^2+6pt=-6t(t-p)$

p=0ならば、 $f'(t)=-6t^2<0$ となり、f(t)は単調減少。 このとき、y=qと $y=-2t^3+3pt^2$ の交点は1つのみである。

p>0のとき、f(t)の増減は右の通り。

f(0) = 0, $f(p) = p^3$ であるから ∴ $0 < q < p^3$

t	•••	0	•••	p	
f'(t)	_	0	+	0	_
f(t)	`*		1		~

p < 0のとき、f(t)の増減は右の通り。

$$\therefore p^3 < q < 0$$

t		p		0	
f'(t)	_	0	+	0	_
f(t)	/		/		/

以上により p < 0のとき $p^3 < q < 0$ 、 p > 0のとき $0 < q < p^3$ ……(答)