1996 年京大後期文 4

$$x>0$$
、 $y>0$ であるから、 $-\frac{1}{2} \le \frac{x-y}{x+y} \le \frac{1}{2}$ より
$$-x-y \le 2x-2y \le x+y \qquad -\frac{x}{y}-1 \le 2 \cdot \frac{x}{y}-2 \le \frac{x}{y}+1 \qquad \therefore \frac{1}{3} \le \frac{x}{y} \le 3$$

$$x^3-3a^2xy^2+2y^3 \ge 0$$
 の両辺を、 y^3 で割ると $\left(\frac{x}{y}\right)^3-3a^2 \cdot \frac{x}{y}+2 \ge 0$ これより、 $t=\frac{x}{y}$ とおくと、 $\frac{1}{3} \le t \le 3$ の範囲で、 $t^3-3a^2t+2 \ge 0$ が成り立てばよい。

$$f(t)=t^3-3a^2t+2$$
 とすると、
$$a=0$$
 のとき $\frac{1}{3} \le t \le 3$ において、 $f(t)=t^3+2>0$ は成立。

$$a > 0$$
のとき $f'(t) = 3t^2 - 3a^2 = 3(t+a)(t-a)$
 $t > 0$ における増減は、右の通り。

t	0	•••	а	•••
f'(t)		_	0	+
f(t)		_		1

$$f(t)$$
の $\frac{1}{3} \le t \le 3$ における最小値は、 $f\left(\frac{1}{3}\right)$, $f(3)$, $f(a)$ のいずれかであるから、

$$f\left(\frac{1}{3}\right) \ge 0$$
 かっ $f(3) \ge 0$ かっ $f(a) \ge 0$ であればよい。

$$f\left(\frac{1}{3}\right) = \frac{1}{27} - a^2 + 2 = \frac{55}{27} - a^2 \ge 0 \quad \therefore 0 < a \le \frac{\sqrt{165}}{9} \quad f(3) = 29 - 9a^2 \ge 0 \quad \therefore 0 < a \le \frac{\sqrt{29}}{3}$$
$$f(a) = 2(1 - a^3) \ge 0 \quad \therefore 0 < a \le 1$$

結局、 $0 < a \le 1$ であるから、a = 0と合わせて $\therefore 0 \le a \le 1$ ……(答)