1999年京大後期文4

 $f(x) = x^3 + kx$ とする。 f(x) は奇関数であり、 y = f(x) のグラフは原点に関して点対称である。 y = f(x) 上の点 $(t, t^3 + kt)$ における接線を考える。 $f'(x) = 3x^2 + k$ より $y = (3t^2 + k)(x - t) + t^3 + kt = (3t^2 + k)x - 2t^3$ これが y = f(x) 上にない点 (a, b) を通るとき $b = (3t^2 + k)a - 2t^3 = -2t^3 + 3at^2 + ka$ — ①

t に関する 3 次方程式①が 3 つの相違なる実数解を持つとき、 $s=-2t^3+3at^2+ka$ のグラフと、s=bのグラフが、3 つの共有点を持つ。 $g(t)=-2t^3+3at^2+ka$ とおくと $g'(t)=-6t^2+6at=-6t(t-a)$ a=0 のとき、 $g'(t)\leq 0$ となるので、s=g(t) は単調減少であり、不適。 a>0 のとき、t=0 で極小、t=a で極大となる。 a<0 のとき、t=a で極小、t=a で極大となる。

g(0) = ka, $g(a) = a^3 + ka$ であるから、y = f(x) に 3 本の接線が引ける点(a, b) の存在範囲はa > 0 のとき $ka < b < a^3 + ka$ 、a < 0 のとき $a^3 + ka < b < ka$

領域 A は x>0 の範囲にあるから、x>0 かつ $kx< y< x^3+kx$ が表す領域に、A 全体が含まれる。 $k\ge 0$ のとき、x>0 かつ $kx< y< x^3+kx$ が表す領域は、第 1 象限の点しか含まない。 A は第 4 象限にあるから、少なくとも k< 0 が必要である。

k<0のとき

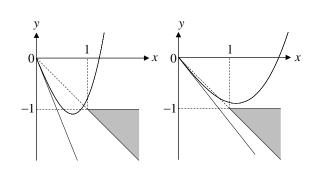
 $f'(x) = 3x^2 + k$ より、 $f(x) \cap x > 0$ における増減は右の通り。

x	0		$\sqrt{-\frac{k}{3}}$	
f'(x)		_	0	+
f(x)		/		1

$$\sqrt{-\frac{k}{3}} < 1 \quad -3 < k \mathcal{O} \geq \tilde{z}$$

 $k \leq -1$ かつ $-1 \leq f(1) = 1 + k$ であればよいので $\therefore -2 \leq k \leq -1$

$$\sqrt{-\frac{k}{3}} \ge 1 \quad k \le -3 \, \mathcal{O} \, \mathcal{E} \, \stackrel{?}{=} \, \frac{1}{3} \times 1 = -\frac{1}{3} \times 1$$



以上により、 $-2 \le k \le -1$ が必要であるが、このとき、上記議論により、 A 全体が x > 0 かつ $kx < y < x^3 + kx$ に含まれることは明らかである。 求める必要十分条件は $\therefore -2 \le k \le -1$ ……(答)

x = kxは、 $y = x^3 + kx$ の原点における接線、すなわち変曲点における接線である。