1999 年京大文 1

 $AB \leq AC$ とする。このとき、点Hは、線分BM上にある。

 $\angle BMA = \alpha$, $\angle BPA = \theta$ とすると、 $\alpha \le \theta \le \frac{\pi}{2}$ であり、 θ は鋭角か直角である。

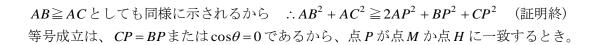
余弦定理により

$$AB^2 = AP^2 + BP^2 - 2AP \cdot BP\cos\theta$$
 $AC^2 = AP^2 + CP^2 - 2AP \cdot CP\cos(\pi - \theta) = AP^2 + CP^2 + 2AP \cdot CP\cos\theta$ 辺々足すと

$$AB^{2} + AC^{2} = 2AP^{2} + BP^{2} + CP^{2} + 2AP(CP - BP)\cos\theta$$

$$BP \le CP$$
 であり、 $\alpha \le \theta \le \frac{\pi}{2}$ より $\cos \theta \ge 0$ であるから

$$2AP(CP - BP)\cos\theta \ge 0$$
 $\therefore AB^2 + AC^2 \ge 2AP^2 + BP^2 + CP^2$



※最初はベクトルの利用を考えたが、幾何で考えた方が簡明である。

