2009 年京大理甲 2

点 A_{n+2} は、 OA_{n+1} に関して点 A_n と対称であるから、 $OA_{n+2}=OA_n$ 、 $\angle A_nOA_{n+1}=\angle A_{n+1}OA_{n+2}$ である。

$$\angle A_2OA_3 = \angle A_3OA_4 = \angle A_4OA_5 = \theta$$
、 $OA_1 = OA_3 = OA_5 = x$ より、 $\triangle OA_2A_5$ の面積は $S_2 = \frac{1}{2}xy|\sin 3\theta|$

 \triangle OA_1A_2 の面積は、 $S_1=\frac{1}{2}xy\sin\theta$ であるから、 $\left|\sin 3\theta\right|$ が $\sin\theta$ の正の整数倍であればよい。

 $\left|\sin 3\theta\right| = \left|\sin \theta \cos 2\theta + \cos \theta \sin 2\theta\right| = \left|\sin \theta (1 - 2\sin^2 \theta) + 2\sin \theta (1 - \sin^2 \theta)\right| = \left|3\sin \theta - 4\sin^3 \theta\right| = \sin \theta |3 - 4\sin^2 \theta|$

これより、 $\left|3-4\sin^2\theta\right|$ が正の整数値をとる。

 $3-4\sin^2\theta > 0$ $\emptyset \ge 3$ $0 < \sin^2\theta < \frac{3}{4}$ $0 < 3-4\sin^2\theta < 3$ $\therefore 3-4\sin^2\theta = 1, 2$

 $3-4\sin^2\theta=1$ Ø $\geq \frac{\pi}{4}$ $\sin^2\theta=\frac{1}{2}$ $\sin\theta=\frac{1}{\sqrt{2}}$ $\therefore \theta=\frac{\pi}{4}, \frac{3}{4}\pi$

 $3-4\sin^2\theta=2$ \mathcal{O} $\geq \frac{\pi}{6}$ $\sin^2\theta=\frac{1}{4}$ $\sin\theta=\frac{1}{2}$ $\therefore \theta=\frac{\pi}{6}, \frac{5}{6}\pi$

 $3-4\sin^2\theta < 0$ $\emptyset \ge 3$ $\frac{3}{4} < \sin^2\theta \le 1$ $0 < 4\sin^2\theta - 3 \le 1$ $\therefore 4\sin^2\theta - 3 = 1$

 $\sin^2 \theta = 1$ $\sin \theta = 1$ $\therefore \theta = \frac{\pi}{2}$

以上により $\therefore \theta = \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3}{4}\pi, \frac{5}{6}\pi$ ·····(答)

2009年京大理乙2 ※2019.10.3 十分性の論証を訂正。

(必要性)

A, B, C, A', B', C' が、同一円周上にあるとき、A', B', C' は、 $\triangle ABC$ の外接円上にある。A', B', C' は、それぞれ、BC, CA, AB の垂直二等分線上にあるから、A'B = A'C, B'C = B'A, C'A = C'B である。

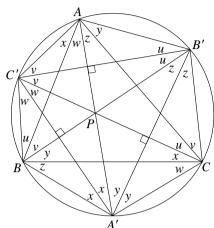
B'A = B'P, C'A = C'P, C'B = C'P, A'B = A'P, A'C = A'P, B'C = B'P より、B'C', C'A', A'B' は、それぞれ PA, PB, PC の垂直二等分線である。 $\angle PB'A = 2u$, $\angle PC'A = 2v$, $\angle PC'B = 2w$, $\angle PA'B = 2x$, $\angle PA'C = 2y$, $\angle PB'C = 2z$

とおくと

B' は、C, P, A を通る円の中心であるから、円周角の定理より $\angle PCA = u$, $\angle PAC = z$

C'は、A, P, B を通る円の中心であるから、円周角の定理より $\angle PBA = v$, $\angle PAB = w$

A' は、B, P, C を通る円の中心であるから、円周角の定理より $\angle PCB = x$, $\angle PBC = y$



さらに、円周角の定理より

 $\angle A'BC = \angle A'B'C = z$, $\angle A'CB = \angle A'C'B = w$, $\angle B'CA = \angle B'C'A = v$, $\angle B'AC = \angle B'A'C = y$, $\angle C'AB = \angle C'A'B = x$, $\angle C'BA = \angle C'B'A = u$

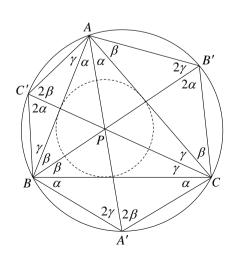
すると、A'B = A'Cより $\angle A'BC = \angle A'CB$ $\therefore z = w$ B'C = B'Aより $\angle B'CA = \angle B'AC$ $\therefore v = y$ C'A = C'Bより $\angle C'AB = \angle C'BA$ $\therefore x = u$

したがって、 $\angle PAB = \angle PAC$, $\angle PBC = \angle PBA$, $\angle PCA = \angle PCB$ であるから、P は $\triangle ABC$ の内心である。

(十分性)

P が \triangle ABC の内心であるとき、 $\angle BAA' = \angle CAA' = \alpha$ 、 $\angle CBB' = \angle ABB' = \beta$ 、 $\angle ACC' = \angle BCC' = \gamma$ とする。 このとき、 $2(\alpha + \beta + \gamma) = \pi$ である。

A'を中心とし、B, C, Pを通る円について、 中心角 $\angle PA'B$ は、円周角 $\angle PCB$ の 2 倍であるから $\therefore \angle PA'B = 2\gamma$ 中心角 $\angle PA'C$ は、円周角 $\angle PBC$ の 2 倍であるから $\therefore \angle PA'C = 2\beta$ すると、 $\angle BAC + \angle BA'C = 2(\alpha + \beta + \gamma) = \pi$ であるから、 四角形 ABA'C は、 $\triangle ABC$ の外接円に内接している。 すなわち、A' は $\triangle ABC$ の外接円上にある。



同様に、B'を中心とし、C, A, Pを通る円について、 中心角 $\angle PB'C$ は、円周角 $\angle PAC$ の 2 倍であるから $\therefore \angle PB'C = 2\alpha$ 中心角 $\angle PB'A$ は、円周角 $\angle PCA$ の 2 倍であるから $\therefore \angle PB'A = 2\gamma$ すると、 $\angle CBA + \angle CB'A = 2(\alpha + \beta + \gamma) = \pi$ であるから、 四角形 CBAB' は、 $\triangle ABC$ の外接円に内接している。 すなわち、B' は $\triangle ABC$ の外接円上にある。

同様に、C' を中心とし、A, B, P を通る円について、中心角 $\angle PC'A$ は、円周角 $\angle PBA$ の 2 倍であるから $\therefore \angle PC'A = 2\beta$ 中心角 $\angle PC'B$ は、円周角 $\angle PAB$ の 2 倍であるから $\therefore \angle PC'B = 2\alpha$ すると、 $\angle ACB + \angle AC'B = 2(\alpha + \beta + \gamma) = \pi$ であるから、四角形 ACBC' は、 $\triangle ABC$ の外接円に内接している。すなわち、C' は $\triangle ABC$ の外接円上にある。

したがって、A, B, C, A', B', C' は、同一円周上にある。

以上により、A, B, C, A', B', C' が、同一円周上にあるための必要十分条件は、P が $\triangle ABC$ の内心に一致することであることが示された。(証明終)

(注)

A', B', C' は、それぞれ AP, BP, CP の延長上にあることがわかるが、これを前提にしてはならない。