2011 年京大理 5

3点(4,0,0),(0,4,0),(0,0,4)を通る平面 α の方程式は、x+y+z=4で与えられる。

$$\alpha$$
 と原点の距離は $\frac{|0+0+0-4|}{\sqrt{1+1+1}} = \frac{4}{\sqrt{3}} - \frac{16}{3} < 6$ より $\therefore \frac{4}{\sqrt{3}} < \sqrt{6}$

したがって、平面 α と球面Sは共有点を持つ。(証明終)

次に、点
$$(x, y, z)$$
が平面 α と球面 S の共有点であるとき、 $x+y+z=4$, $x^2+y^2+z^2=6$ より $x^2+y^2+z^2=(x+y+z)^2-2(yz+zx+xy)=16-2(yz+zx+xy)=6$ $\therefore yz+zx+xy=5$

xyz=aとすると、解と係数の関係により、x, y, zは 3 次方程式 $p^3-4p^2+5p-a=0$ 0 3 つの実数解である。 重解を含む。 $a=p^3-4p^2+5p$ として、直線 q=a と曲線 $q=p^3-4p^2+5p$ が、重解を含む 3 つの共有点を持つ範囲を調べればよい。

$$f(p) = p^3 - 4p^2 + 5p$$
 とすると
 $f'(p) = 3p^2 - 8p + 5 = (3p - 5)(p - 1)$

f(p)の増減は右の通りで、p=1のとき極大、 $p=\frac{5}{3}$ のとき極小。

$$f(1) = 2$$
、 $f\left(\frac{5}{3}\right) = \frac{125}{27} - \frac{100}{9} + \frac{25}{3} = \frac{125 - 300 + 225}{27} = \frac{50}{27}$ であるから

求める範囲は $\frac{50}{27} \le a \le 2$ $\therefore \frac{50}{27} \le xyz \le 2$ ·····(答)

p		1	•••	$\frac{5}{3}$	•••
f'(p)	+	0	_	0	+
f(p)	1		/		7

