2021 年京大理 2

$$P\left(t,\frac{1}{2}(t^2+1)\right)$$
とすると、 P における接線の方程式は $y=t(x-t)+\frac{1}{2}(t^2+1)=tx-\frac{1}{2}(t^2-1)$

これはx軸と交わるから、 $t \neq 0$ として、 $Q\left(\frac{1}{2}\left(t - \frac{1}{t}\right), 0\right)$ となる。

$$L^2 = \left\{\frac{1}{2}\left(t + \frac{1}{t}\right)\right\}^2 + \left\{\frac{1}{2}\left(t^2 + 1\right)\right\}^2 = \frac{1}{4}\left(t^2 + 2 + \frac{1}{t^2} + t^4 + 2t^2 + 1\right) = \frac{1}{4}\left(t^4 + 3t^2 + \frac{1}{t^2} + 3\right)$$

$$f(t) = \frac{1}{4} \left(t^4 + 3t^2 + \frac{1}{t^2} + 3 \right)$$
 \ge \Rightarrow \ge

$$f'(t) = \frac{1}{4} \left(4t^3 + 6t - \frac{2}{t^3} \right) = \frac{2t^6 + 3t^4 - 1}{2t^3} = \frac{(2t^2 - 1)(t^4 + 2t^2 + 1)}{2t^3} = \frac{\left(\sqrt{2}t + 1\right)\left(\sqrt{2}t - 1\right)(t^2 + 1)^2}{2t^3}$$

f(t)の増減は右の通りで、 $t = \pm \frac{1}{\sqrt{2}}$ のとき極小。

$$f\left(\pm\frac{1}{\sqrt{2}}\right) = \frac{1}{4}\left(\frac{1}{4} + \frac{3}{2} + 2 + 3\right) = \frac{27}{16}$$

t		$-\frac{1}{\sqrt{2}}$		0		$\frac{1}{\sqrt{2}}$	
f'(t)	-	0	+		ı	0	+
f(t)	_		1		1		1

求めるLの最小値は $\therefore \frac{3\sqrt{3}}{4}$ ……(答)