1971年東大理4文4共通

$$f_n(x) = 1 + \sum_{k=1}^n \frac{x^k}{k!} \qquad n \ge 2 \text{ or } \ge 3 \text{ or } x^k = \sum_{k=1}^n \frac{x^{k-1}}{(k-1)!} = 1 + \sum_{k=2}^n \frac{x^{k-1}}{(k-1)!} = 1 + \sum_{k=1}^{n-1} \frac{x^k}{k!} = f_{n-1}(x) \quad \text{(証明終)}$$

n=1 のとき $f_1(x)=1+x$ は単調増加であり、 $f_1(x)=0$ はただ 1 つの実根 x=-1 を持つ。

$$n=2$$
 のとき $f_2(x)=1+x+\frac{x^2}{2}=\frac{1}{2}\{(x+1)^2+1\}>0$ であり、 $f_2(x)=0$ は実根を持たない。

n=2k-1 のとき $f_n(x)$ は単調増加で $f_n(x)=0$ はただ 1 つの実根を持ち、 n=2k のとき $f_n(x)>0$ で $f_n(x)=0$ は 実根を持たないと仮定する。

n = 2k + 1 $O \ge 3$ $f'_{2k+1}(x) = f_{2k}(x)$

 $f_{2k}(x) > 0$ であるから、 $f_{2k+1}(x)$ は単調増加。

また、 $f_{2k+1}''(x) = f_{2k-1}(x)$ で、仮定より $f_{2k-1}(x)$ は単調増加であり、 $f_{2k-1}(x) = 0$ はただ 1 つの実根を持つ。これを $x = \alpha$ とおくと、 $f_{2k+1}(x)$ は $x = \alpha$ においてただ 1 つの変曲点を持つ。

 $x < \alpha$ のとき $f_{2k+1}(x) < 0$ で、 $f_{2k+1}(x)$ は上に凸。 $x > \alpha$ のとき $f_{2k+1}(x) > 0$ で、 $f_{2k+1}(x)$ は下に凸。

X	•••	α	•••
$f_{2k+1}'(x)$	+	+	+
$f_{2k+1}''(x)$	_	0	+
$f_{2k+1}(x)$	(*		→

したがって、 $f_{2k+1}(x)$ は単調増加で $f_{2k+1}(x)=0$ はただ1つの実根を持つ。この実根を $x=\beta$ とおく。

 $f_{2k+1}(x)$ は単調増加で $f_{2k+1}(x)=0$ はただ 1 つの実根 $x=\beta$ を持つから、 $f_{2k+2}(x)$ は $x=\beta$ で極小となる。 $f_{2k+2}''(x)=f_{2k}(x)>0$ で $f_{2k}(x)=0$ は実根を持たないので、 $f_{2k+2}(x)$ は変曲点を持たず、下に凸。

X	•••	β	•••
$f_{2k+2}'(x)$	_	0	+
$f_{2k+2}''(x)$	+	+	+
$f_{2k+2}(x)$	\		1

 $f_{2k+2}(0)$ =1であるから、 $\beta \neq 0$ であり、 $f_{2k+2}(\beta)>0$

したがって、すべての実数 x について $f_{2k+2}(x) > 0$ が成り立ち、 $f_{2k+2}(x) = 0$ は実根を持たない。

以上により、n=2k+1、n=2k+2のときも成立し、題意は示された。(証明終)