1974年東大理[2] 文[2] 共通

(1)

長さlの線分の両端の点を、 $P(p, p^2), Q(q, q^2)$ (p < q) とする。M(x, y) とすると

$$x = \frac{q+p}{2} \quad \therefore q+p = 2x \quad --- \text{①}$$

$$l^2 = (q-p)^2 + (q^2 - p^2)^2 = (q-p)^2 \{1 + (q+p)^2\}$$

$$y = \frac{q^2 + p^2}{2} = \frac{(q+p)^2 - 2pq}{2}$$
 であるから、①と②より

$$\therefore y = 2x^2 - \left\{x^2 - \frac{l^2}{4(1+4x^2)}\right\} = x^2 + \frac{l^2}{4(1+4x^2)}$$

y が最小になればよい。 $f(x) = x^2 + \frac{l^2}{4(1+4x^2)}$ とすると

$$f'(x) = 2x - l^2 \cdot \frac{8x}{4(1+4x^2)^2} = \frac{2x\left\{(1+4x^2)^2 - l^2\right\}}{(1+4x^2)^2} = \frac{2x(1+4x^2+l)(1+4x^2-l)}{(1+4x^2)^2}$$

l=1 のとき $1+4x^2-l=4x^2 \ge 0$

増減表より、f(x) はx=0 のとき最小値 $\frac{1}{4}$ をとる。

x	•••	0	•••
f'(x)		0	+
f(x)	/		1

 $l > 1 \mathcal{O} \$ $\geq 3 + 4x^2 - l = (2x + \sqrt{l-1})(2x - \sqrt{l-1})$

増減表より、f(x) は $x=\pm \frac{\sqrt{l-1}}{2}$ のとき極小となる。

$$f\left(\pm\frac{\sqrt{l-1}}{2}\right) = \frac{l-1}{4} + \frac{l^2}{4\{(l-1)+1\}} = \frac{1}{2}l - \frac{1}{4}$$

х	•••	$-\frac{\sqrt{l-1}}{2}$		0	•••	$\frac{\sqrt{l-1}}{2}$	
f'(x)	_	0	+	0	_	0	+
f(x)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		/		~		1

以上により、求めるMの座標は l=1のとき $\left(0,\frac{1}{4}\right)$ 、l>1のとき $\left(\pm\frac{\sqrt{l-1}}{2},\frac{1}{2}l-\frac{1}{4}\right)$ ……(答)