1975 年東大理 3

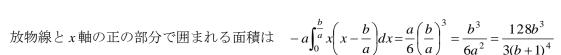
$$D = (b+1)^2 - 16a = 0 \quad \therefore a = \frac{(b+1)^2}{16}$$

このとき
$$\frac{(b+1)^2}{16}x^2-(b+1)x+4=0$$
 $b\neq -1$ であるから

接点の
$$x$$
 座標は $x^2 - \frac{16}{b+1}x + \frac{64}{(b+1)^2} = 0$ $\left(x - \frac{8}{b+1}\right)^2 = 0$ $\therefore x = \frac{8}{b+1}$

また、
$$-ax^2 + bx = x(b-ax)$$
の $x = 0$ 以外の解は、 $x = \frac{b}{a} = \frac{16b}{(b+1)^2}$ であるから

$$\frac{16b}{(b+1)^2} > 0$$
 より ∴ $b > 0$ このとき、 $\frac{8}{b+1} > 0$ も満たす。



f(b) の増減は右の通りで、b=3のとき極大。

b	0		3	
f'(b)		+	0	_
f(b)		*		_

このとき
$$a=1$$
で、 $f(3)=\frac{27}{256}$ であるから

面積が最大となる
$$a, b$$
 は $\therefore a=1, b=3$ ……(答) 面積の最大値は $\frac{128}{3} \cdot \frac{27}{256} = \frac{9}{2}$ ……(答)

