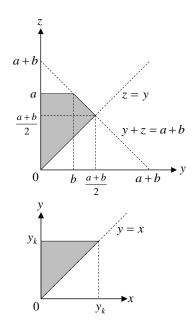
1987 年東大文 4

Rのうち、 $0 \le x \le y \le z$ を満たす部分を $R_{x \le y \le z}$ とする。 $R_{x \le y \le z}$ の体積を考える。

 $\max(x, y, z) = z$ 、 $\min(x, y, z) = x$ であるから $z \le a$ ——① $y + z \le a + b$ ——② $0 \le y \le z$ ——③

①、②、③より、y, z がとり得る範囲は右図の通り。

 $R_{x \le y \le z}$ のz = k ($0 \le k \le a$) における断面を考える。 z = k において、y がとり得る最大値を y_k とすると、 $0 \le x \le y \le y_k$ であるから断面は右図のようになり、断面積は $\frac{1}{2}y_k^2$ である。



 $0 \le k \le \frac{a+b}{2}$ のとき $y_k = k$ より、断面積は $\frac{1}{2}k^2$

 $\frac{a+b}{2} \le k \le a$ のとき $y_k = a+b-k$ より、断面積は $\frac{1}{2}(a+b-k)^2$

 $R_{x \leq y \leq_7}$ の体積は

$$\frac{1}{2} \int_{0}^{\frac{a+b}{2}} k^{2} dk + \frac{1}{2} \int_{\frac{a+b}{2}}^{a} (a+b-k)^{2} dk$$

$$= \frac{1}{2} \left[\frac{k^{3}}{3} \right]_{0}^{\frac{a+b}{2}} + \frac{1}{2} \left[\frac{(k-a-b)^{3}}{3} \right]_{\frac{a+b}{2}}^{a} = \frac{(a+b)^{3}}{48} - \frac{b^{3}}{6} + \frac{(a+b)^{3}}{48} = \frac{(a+b)^{3}}{24} - \frac{b^{3}}{6}$$

対称性より、求めるRの体積はこの6倍であるから $:\frac{(a+b)^3}{4}-b^3$ ……(答)

(注)

Rが表す立体を図示すると、右図のようになる。 図から体積を求めることもできるが、 対称性を利用する方が得策である。

