1993 年東大理 2

(1)

 $a_1=1,\ a_2=3$ $a_3=3a_2-7a_1=2$ であるから、 $a_1,\ a_2$ は奇数で、 a_3 は偶数。 $a_{3k-2}=2p+1,\ a_{3k-1}=2q+1$ とすると $a_{3k}=3a_{3k-1}-7a_{3k-2}=3(2q+1)-7(2p+1)=6q-14p-4$ したがって、 a_{3k} は偶数。

 $a_{3k-1}=2q+1,\ a_{3k}=2r$ とすると $a_{3k+1}=3a_{3k}-7a_{3k-1}=3\cdot 2r-7(2q+1)=6r-14q-7$ したがって、 a_{3k+1} は奇数。

 $a_{3k}=2r,\ a_{3k+1}=2s+1$ とすると $a_{3k+2}=3a_{3k+1}-7a_{3k}=3(2s+1)-7\cdot 2r=6s-14$ lr + 3 したがって、 a_{3k+2} は奇数。

 a_{3k+1} , a_{3k+2} が奇数であるから、 $a_{3k+3} = a_{3(k+1)}$ は偶数。

以上により、 a_n が偶数であることと、nが3の倍数であることは同値。(証明終)

(2)

 $a_n = 5q_n + r_n$ とおく。 r_n は a_n を 5 で割った余りであり、 0, 1, 2, 3, 4 のいずれかである。

$$a_{n+2} = 3a_{n+1} - 7a_n = 3(5q_{n+1} + r_{n+1}) - 7(5q_n + r_n) = 5(3q_{n+1} - 7q_n) + 3r_{n+1} - 7r_n$$

したがって、 a_{n+2} を5で割った余りは、 $3r_{n+1}-7r_n$ を5で割った余りに等しい。 $3r_{n+1}-7r_n$ を5で割った余りを r_{n+2} と定義する。 $r_1=1$, $r_2=3$ であるから $3r_2-7r_1=2$ $\therefore r_3=2$ $3r_3-7r_2=-15=5(-3)$ $\therefore r_4=0$ $3r_4-7r_3=-14=5(-3)+1$ $\therefore r_5=1$ $3r_5-7r_4=3$ $\therefore r_6=3$ したがって、以下帰納的に、 r_n は1、3、2、0、1、3、2、0、…の繰り返しとなる。 n が 4 の倍数のとき、 a_n は5の倍数である。

 a_n が 10 の倍数であるとき、 a_n は偶数かつ 5 の倍数である。 このとき、(1) より、n は 3 の倍数かつ 4 の倍数。 すなわち、n は 12 の倍数である。 以上により、 a_n が 10 の倍数であることと、n が 12 の倍数であることは同値。(証明終)