1997 年東大文 4

$$\frac{2(t^2+t+1)}{3(t+1)} = \frac{2}{3} \left(t + \frac{1}{t+1} \right)$$
 より、直線 AB の傾きは $-\frac{3(t+1)}{2} \cdot (2-2t) = 3(t^2-1)$

直線
$$AB$$
 の方程式は $y = 3(t^2 - 1)\left(x - \frac{2}{3}t\right) - 2t = 3(t^2 - 1)x - 2(t^2 - 1)t - 2t = 3(t^2 - 1)x - 2t^3$

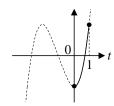
これを、tに関する 3 次方程式と見ると $2t^3 - 3xt^2 + 3x + v = 0$

$$f(t) = 2t^3 - 3xt^2 + 3x + y = 0$$
が、 $0 \le t \le 1$ の範囲で実数解を持つ。 $f'(t) = 6t^2 - 6xt = 6t(t - x)$ より

$x \leq 0$ のとき

 $0 \le t \le 1$ において $f'(t) \ge 0$ であり、 f(t) は単調増加。 $f(0) = 3x + y \le 0$ かつ $f(1) = 2 + y \ge 0$ であればよいから $\therefore -2 \le y \le -3x$

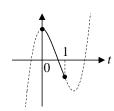
t	0	•••	1
f'(t)	0	+	
f(t)		/	



$1 \le x$ のとき

 $0 \le t \le 1$ において $f'(t) \le 0$ であり、 f(t) 単調減少。 $f(0) = 3x + y \ge 0$ かつ $f(1) = 2 + y \le 0$ であればよいから $\therefore -3x \le y \le -2$

t	0		1
f'(t)	0		
f(t)		/	



0<x<1のとき

f(t)はt=xにおいて極小値をとる。

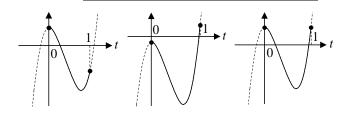
f(x)>0 のとき、 $0 \le t \le 1$ において f(t)>0 となり、不適。

 $f(x) \le 0$ のとき、 $f(0) \ge 0$ または $f(1) \ge 0$ であればよい。

t	0		x		1
f'(t)		_	0	+	
f(t)		/		1	

$$f(x) = -x^3 + 3x + y \downarrow y$$

 $\therefore y \le x^3 - 3x$ かつ $(y \ge -3x$ または $y \ge -2)$



 $g(x) = x^3 - 3x$ とすると、 $g'(x) = 3(x^2 - 1)$ であり、0 < x < 1 において単調減少。

以上により、直線ABの通り得る範囲は右図の通り。 境界線を含む。

(注)

 $y=3(t^2-1)x-2t^3$ は、 $y=x^3-3x$ 上の点 (t,t^3-3t) における接線である。

