1999 年東大文 2

(a) より
$$2z = 2a + 2bi$$
, $\frac{2}{z} = \frac{2}{a+bi} = \frac{2(a-bi)}{a^2+b^2}$ であるから、 $2a$, $\frac{2a}{a^2+b^2}$ は整数。

(b)
$$\ \ \ \ \ \ \ \ \ \ \ \ |z| = \sqrt{a^2 + b^2} \ge 1 \quad \therefore a^2 + b^2 \ge 1$$

a=0のとき、 $b^2 \ge 1$ であれば題意を満たす。 : $b \le -1, 1 \le b$

$$2a = n \neq 0$$
 とおくと $\left(\frac{2a}{a^2 + b^2}\right)^2 \le \left(\frac{2a}{a^2}\right)^2 = \frac{4}{a^2} = \frac{16}{n^2}$ $\therefore \frac{2|a|}{a^2 + b^2} \le \frac{4}{|n|}$ $\frac{4}{|n|} < 1$ のとき、 $\frac{2|a|}{a^2 + b^2} < 1$ であるから $\frac{2|a|}{a^2 + b^2} = 0$ $\therefore a = 0$ $n \neq 0$ であるから不適。

したがって
$$\frac{4}{|n|} \ge 1$$
であり $|n| \le 4$ $n = \pm 1, \pm 2, \pm 3, \pm 4$

$$n = \pm 1$$
 $0 \ge 3$ $a = \pm \frac{1}{2}$ $b^2 \ge 1 - \frac{1}{4} = \frac{3}{4}$

$$\frac{2|a|}{a^2+b^2} = \frac{4}{1+4b^2} \le 4 \text{ }$$
 は $\frac{4}{1+4b^2} = 1$, 2, 3, 4 $b^2 = \frac{3}{4}$, $\frac{1}{4}$, $\frac{1}{12}$, 0 適するのは $b^2 = \frac{3}{4}$ $\therefore b = \pm \frac{\sqrt{3}}{2}$

$$n=\pm 2$$
 のとき $a=\pm 1$ $a^2+b^2 \ge 1$ は任意の b について成立。

$$\frac{2|a|}{a^2+b^2} = \frac{2}{1+b^2} \le 2 \ \ \ \ \ \ \frac{2}{1+b^2} = 1, \ 2 \quad b^2 = 1, \ 0 \quad \therefore b = \pm 1, \ 0$$

$$n=\pm 3$$
のとき $a=\pm \frac{3}{2}$ $a^2+b^2 \ge 1$ は任意の b について成立。

$$\frac{2|a|}{a^2 + b^2} = \frac{12}{9 + 4b^2} \le \frac{4}{3} \ \ \ \ \ \ \ \frac{12}{9 + 4b^2} = 1 \quad \ b^2 = \frac{3}{4} \quad \ \therefore b = \pm \frac{\sqrt{3}}{2}$$

 $n=\pm 4$ のとき $a=\pm 2$ $a^2+b^2 \ge 1$ は任意のbについて成立。

$$\frac{2|a|}{a^2 + b^2} = \frac{4}{4 + b^2} \le 1 \ \ \ \ \ \ \frac{4}{4 + b^2} = 1 \quad \therefore b = 0$$

以上をまとめると、z=a+biの存在範囲は

点
$$\left(\pm\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$$
, $\left(\pm1,0\right)$, $\left(\pm1,\pm1\right)$, $\left(\pm\frac{3}{2},\pm\frac{\sqrt{3}}{2}\right)$, $\left(\pm2,0\right)$

および虚数軸上の $b \le -1$, $1 \le b$ の部分である。

図示すると右の通り。

