2004年東大理4

(1)

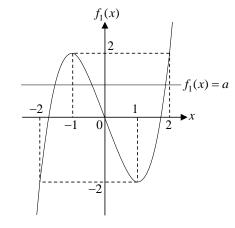
$$f_1(x) = x^3 - 3x$$
 $f_1'(x) = 3(x^2 - 1) = 3(x + 1)(x - 1)$
 $x = -1$ のとき極大値 2 をとり、 $x = 1$ のとき極小値 -2 をとる。

x		-1		1	•••
$f_1'(x)$	+	0	_	0	+
$f_1(x)$	1	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-2	≠

 $f_1(x)$ のグラフの概形は右図の通り。

 $f_1(x) = a$ との交点の個数を考えればよい。

$$\begin{cases} a < -2, \ 2 < a \text{ のとき} & 1 個 \\ a = \pm 2 \text{ のとき} & 2 個 & \cdots \end{cases}$$
 (答)
$$-2 < a < 2 \text{ のとき} & 3 個$$



(2)

(1)より、
$$f_2(x) = f_1(f_1(x)) = a$$
を満たす実数 $f_1(x)$ の個数は

$$\begin{cases} a < -2, 2 < a$$
のとき 1個 $a = \pm 2$ のとき 2個 $-2 < a < 2$ のとき 3個

a<-2,2<aのとき

 $f_1(f_1(x)) = a$ を満たす 1 個の実数 $f_1(x)$ は、 $f_1(x) < -2$, $2 < f_1(x)$ を満たす。このとき対応する実数 x は 1 個。

 $a = -2 \mathcal{O} \geq \hat{z}$

 $f_1(f_1(x)) = a$ を満たす 2 個の実数 $f_1(x)$ は $f_1(x) = -2$, 1 である。

 $f_1(x) = -2$ に対応する実数 x は x = -2, 1の 2 個。

 $f_1(x)=1$ に対応する実数xは3個。

 $a=2 \mathcal{O}$ とき

 $f_1(f_1(x)) = a$ を満たす 2 個の実数 $f_1(x)$ は $f_1(x) = -1$, 2 である。

 $f_1(x) = -1$ に対応する実数 x は 3 個。

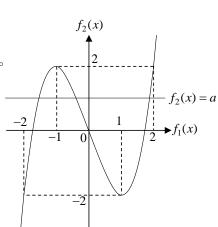
 $f_1(x) = 2$ に対応する実数 x は x = -1, 2 の 2 個。

-2<a<2のとき

 $f_1(f_1(x)) = a$ を満たす 3 個の実数 $f_1(x)$ は、いずれも $-2 < f_1(x) < 2$ を満たす。

それぞれについて、対応する実数 x は 3 個。

$$\begin{cases} a < -2, 2 < a \text{ のとき} & 1 個 \\ a = \pm 2 \text{ のとき} & 5 個 & \cdots \cdots \text{ (答)} \\ -2 < a < 2 \text{ のとき} & 9 個 \end{cases}$$



(3)

-2 < a < 2のとき、 $f_n(x) = a$ を満たす実数 xの個数は 3^n 個であることを、数学的帰納法により示す。

(1)、(2)より、n=1,2のとき成立。

n=kのとき $f_k(x)=a$ を満たす実数xの個数は 3^k 個と仮定する。

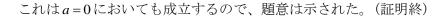
n=k+1のとき

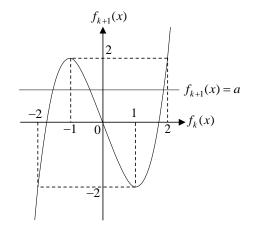
 $f_{k+1}(x) = f_1(f_k(x)) = a$ を満たす実数 $f_k(x)$ の個数は3個であり、 それらはいずれも $-2 < f_k(x) < 2$ を満たす。

仮定により、それぞれについて対応する実数xは 3^k 個であるから、 $f_{k+1}(x) = a$ を満たす実数xの個数は 3^{k+1} 個。

したがって、n=k+1でも成立。

以上により、-2 < a < 2のとき、 $f_n(x) = a$ を満たす実数xの個数は 3^n 個である。





(注)

(3)の問題文通り、 $f_n(x)=0$ を満たす実数 xの個数は 3 " 個であることを、数学的帰納法により示すには

n=1のとき $x=0, \pm \sqrt{3}$ の 3 個であり、成立。

n=k のとき $f_k(x)=0$ を満たす実数 x の個数は 3^k 個と仮定する。

n=k+1のとき

 $f_{k+1}(x) = f_1(f_k(x)) = 0$ を満たす実数 $f_k(x)$ は、 $f_k(x) = 0$, $\pm \sqrt{3}$ の 3 個。

 $f_k(x)=0$ を満たす実数 x の個数は、仮定より 3^k 個だが、 $f_k(x)=\pm\sqrt{3}$ については仮定を使えない。 結局、 $f_k(x)=\pm\sqrt{3}$ を満たす実数 x の個数もそれぞれ 3^k 個であることを、別途示す必要が生じる。