
ON KOLLÁR’S INJECTIVITY THEOREM

コラールの単射性定理について

藤野 修（OSAMU FUJINO）

Abstract. In this short note, we will explain Kodaira’s vanishing
theorem and Enoki’s injectivity theorem, which is a generalization
of Kollár’s injectivity theorem for compact Kähler manifolds. Our
main ingredient is the theory of harmonic forms on compact Kähler
manifolds. It seems to be much more powerful than we expected.
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1. はじめに

講演では解析的な乗数イデアル層のことやコラールの単射性定理の
一般化の証明なども話したが、この報告書では小平の消滅定理と榎の
単射性定理に話をしぼりたい。何事も基礎が大切なのである。内容的
にはかなり古典的で、ちゃんと勉強すると全然難しくない話だと思う。
おそらく少し年配の代数幾何学者には常識だったと思われる。しかし、
若い世代の代数幾何学者はあまりこの方面を勉強する機会がないと思
う。消滅定理やコホモロジー論は研究対象と言うよりは、研究のため
の道具であると教育されているように思う1。2章では小平の消滅定理
について語ってみる。いろいろな意見があると思うが、小平の消滅定

1私自身のことを思い出してみると、消滅定理と特異点解消定理はとりあえず認め
て、高次元代数多様体の双有理幾何学の勉強を始めた。セミナーで消滅定理や特異
点解消について語った覚えはない。ただ、個人的に消滅定理は好きだったので、様々
な証明をこっそりと勉強した覚えがある。特異点解消については、ちょうど私が学生
のころに弱広中定理ができたので、これについては読んだ覚えがある。応用上は弱広
中で十分なことも多いと思う。数理研にはカワノーエ計画で有名な川ノ上さんがいた
ので、彼に触発されて、当時最新だった様々な特異点解消のアルゴリズムを勉強した



理がすべての出発点である。ここでは小平の消滅定理へのさまざまな
アプローチを概観するだけで、証明は 4章の最後で与える。3章はこの
報告書の中心である。ここで榎の単射性定理について説明する。榎の
単射性定理は、コラールの単射性定理のコンパクトケーラー多様体版
である。こう言ってしまえばそれまでなのだが、榎の定理のすばらし
さはその証明方法にあると思う。榎の証明によって、コラールの単射
性定理と小平の消滅定理との関係がよく分かるようになっただけでな
く、ボホナートリックが消滅定理だけでなく単射性定理の証明にも有
効であることが明らかになったのである。次の 4章で榎の単射性定理
の証明を与える。もちろん調和積分論の一般論などは認めて、証明の
本質的部分のみを説明する。これだけあれば、興味のある読者が証明
を完成させるには十分だと思う。最後の 5章はその後の発展について
のコメントである。

2. 小平の消滅定理

とりあえず有名な小平の消滅定理から始めよう。

定理 2.1 (小平の消滅定理). X をコンパクトなケーラ－多様体とし、
Lを正な正則直線束とする。このとき、Hq(X,KX ⊗ L) = 0が任意の
q ≥ 1に対して成立する。もちろんKX はXの標準直線束である。

直線束に対する曲率条件を復習しておこう。

定義 2.2. Xを複素多様体とし、Lをその上の正則直線束とする。Lが
正（もしくは半正）とは、L上に滑らかなエルミート計量 hLが存在し、√
−1∂̄∂ log hLがX上の正定値（もしくは半正定値）な (1, 1)-形式とな
ることである。

コンパクトケーラ－多様体X上に正な正則直線束Lがあると、Xは
射影空間に埋め込めることができ（小平の埋め込み定理）、Lは豊富な
直線束になる。ここでセールのGAGAの原理を使うと、通常の代数幾
何学の話になる。したがって、小平の消滅定理は非特異複素射影的代数
多様体とその上の豊富直線束について述べられることも多い。よって、
代数幾何にしか興味のない人は、無理にケーラー多様体上で頑張る必
要はないと思う。ただし、小平の埋め込み定理の証明には小平の消滅
定理が使われていることに注意しておく。小平の消滅定理の証明は後
回しにして、現在知られている小平の消滅定理への様々なアプローチ
を概観してみよう。もちろん私の理解している範囲内である2。先に注
意しておくと、モース理論とホッジ理論によるアプローチは非特異複
素射影的代数多様体とその上の豊富直線束に対してしか適用出来ない。

覚えもある。まぁ、結論から言うと、特異点解消と消滅定理はユーザーに徹しても特
に困らないであろう。

2もちろん他のアプローチもあると思うし、以下で述べる方法を組み合わせて使う
ことも多いと思う。



おそらくコンパクトケーラ－多様体とその上の正な正則直線束に対す
る本来の小平の消滅定理に対しては、調和積分論を使った元々の証明
しかないと思われる。

2.3 (調和積分論). これが小平の最初の証明で、やはり王道の一つだと
思う。しかし、残念ながら代数幾何学者には嫌われているような気が
する。複素幾何の本を見てみると、テンソル計算が延々と書いてあっ
て、それだけで挫けてしまう。よくよく考えてみると、外積代数と部
分積分程度しか使っていないことが分かるのだが、見た目で拒否反応
をおこす人が多いと思う。ボホナートリックのキーポイントは、曲がっ
た世界では微分の順序交換をするとズレとして曲率が現れるという点
である。また、楕円型偏微分方程式の一般論をやりたくなくて避けて
しまうことも多いのであろう。個人的には、関数解析の講義で習った
自己随伴コンパクト作用素の話に遭遇して、「おぉ！こんなところで使
うのか！」と感動した思い出がある。大昔の話である。現在は一番お
気に入りのテクニックである。小平の消滅定理のためだけに調和積分
の一般論を学ぶのは面倒だという意見は、榎の単射性定理の証明をみ
ると捨て去らなくてはいけなくなるであろう。

2.4 (モース理論). 学部でモース理論を習ったときは、「モース関数 fを
−fで取りかえることでポアンカレ双対がでる」という点に感動した程
度で、まさか代数幾何で役立つとは思わなかった。モース理論を使った
小平の消滅定理の証明は、他の方法に比べて、おそらく一番簡単であ
ろう。超平面切断因子の補集合がアフィンで、アフィン多様体のトポロ
ジカルな性質を使ってレフシェッツの超平面切断定理を示すのである。
若い頃は一番お気に入りの証明方法であった。ただ、一番マイナーな
方法のような気がする。この証明方法では整数係数のコホモロジー群
などについての情報も得られるので、なかなか有効な方法だと思うの
だが、小平の消滅定理（や秋月－中野の消滅定理）以外の消滅定理や、
単射性定理に役立つのかどうかは私は知らない。

2.5 (ホッジ理論). これが一番代数幾何学者が好む方法であろう。実際、
この方面のテクニックはコラールやエノー－フィーベックの本でかな
り詳しく解説されているし、これらの本が引用されることも多い。こ
のテクニックの利点の一つは、正標数に還元して、ホッジ－ドラーム
スペクトル系列の退化を示すことにより、純代数的に小平の消滅定理
などを示すことができる点である。私自身この方面で一般化を示した
こともある。この方向は小平の消滅定理そのものと言うよりは、コホ
モロジー群の間の単射性を証明して、セールの消滅定理と組み合わせ
て小平の消滅定理を導き出していると言う方がいいかもしれない。

この辺で小平の消滅定理から榎の単射性定理に向かおう。



3. 榎の単射性定理

榎の単射性定理などという言葉は耳にしたことがないと思う。私自
身も聞いたことがない。有名なのは次に述べるコラールの単射性定理
である。

定理 3.1 (Kollár). Xを非特異複素射影的代数多様体とし、Lを半豊富
な直線束（つまり、ある正の整数mが存在し、Lmが大域切断で生成
されている）とする。kを正の整数とし、0 6= s ∈ Γ(X,Lk)とする。こ
のとき、⊗sから導かれるコホモロジー群の間の射

×s : Hq(X,Ll) → Hq(X,Ll+k)

はすべての q ≥ 0、l ≥ 1に対して単射である。

コラールはタンケーエフの定理の一般化として上の定理を示したの
である。ただし、タンケーエフの定理との差はかなり大きいので、コ
ラールの単射性定理といって問題ないと思う。もし直線束が正である
ことと豊富であることの同値をすでに認めているのなら、コラールの
単射性定理とセールの消滅定理を使うと、小平の消滅定理が復元でき
る。したがって、非特異複素射影的代数多様体に関して言えば、コラー
ルの単射性定理は小平の消滅定理の一般化とも言える。榎の定理はコ
ラールの定理のコンパクトケーラー多様体版である3。直線束について
の条件もコラールの定理とは異なり、計量に関する条件になっている。
当然のことながら榎の定理はコラールの定理を含んでいる。

定理 3.2 (Enoki). Xをコンパクトケーラー多様体とする。Lを半正な
正則直線束とする。kを正の整数とし、0 6= s ∈ Γ(X,Lk)とする。この
とき、⊗sから導かれるコホモロジー群の間の射

×s : Hq(X,Ll) → Hq(X,Ll+k)

はすべての q ≥ 0、l ≥ 1に対して単射である。

定理の証明に入る前に幾つかの事実を述べておく。

事実 3.3. Lが半豊富ならLは半正である。Lが半正ならLは数値的正
である。

最初の事実は簡単である。半豊富なら、定義により、何倍かすると射
影空間上の超平面バンドルの引き戻しになっている。したがって、フビ
ニ－スタディ計量の引き戻しから目的の計量を作ることが出来る。半
正から数値的正が出るのは定義から明らかである。数値的正という条

3これらの事実を考えに入れて、タイトルは「コラールの単射性定理について」と
した。少し先走ってしまうが、コホモロジー群を調和形式の空間であらわすという古
典的結果と中野の公式を組み合わせると、小平の（もっというと、秋月－中野の）消
滅定理も榎の単射性定理も簡単に示せるという点を強調したい。このような観点から
みると、コラールの単射性定理の代数幾何学的証明はトリッキーな印象を受ける。



件を考える時は多様体Xを代数多様体としておく方が良いかもしれな
い。ただ、ここでは数値的正なる条件は使わないので、これ以上は詳
しく述べない。注意しなくてはいけないのは、半豊富、半正、数値的
正は、非特異射影的代数多様体上でも全て異なる概念である。この微
妙な差が幾つかの問題ではシリアスになってくる。小平の消滅定理の
ところで述べた以下の事実もここに書いておく。

事実 3.4. Lが豊富であることと正であることは同値である。

Lが正のとき豊富であるという事実は、小平の埋め込み定理から従
う大結果と思う。逆向きはほぼ明らかである。

3.5 (半豊富、半正、数値的正). もう少しこれらの概念について考えて
みる。Xを非特異複素射影的代数多様体とし、X上の直線束を考える
ことにする。半正であるが半豊富でない直線束の存在はすぐに分かる。
Pic0(X)の元でねじれ元でないものを取ってくればよい。問題は、数値
的正であるが半正でない直線束の存在である。これはかなり難しい問
題であった。数値的正なら半正ではないか？というのが 80年代の藤田
の問題であった。今現在はこのような直線束の存在はよく知られてい
る。文献の中に書いてあるのを見たことはないが、榎の定理を使うの
がもっとも簡単だと思う。数値的正な直線束 Lで榎の定理が成立しな
い例は比較的簡単につくることができる。榎の定理は、考えている直
線束が半正でないということを示すのに使えるのである。

4. 証明のスケッチ

ここで榎の定理の証明を解説したい。基本的道具は小平の消滅定理
と全く同じである。

4.1. X を n次元コンパクト複素多様体とし、M をX 上の正則直線束
とする。

4.2 (接続、曲率). DM をM のチャーン接続とする。つまりDM はM

の計量 hM と両立し、DM をD′

M +D′′

M のように (1, 0)部分と (0, 1)部
分に分解するとD′′

M = ∂̄となっている接続とする。これは計量 hM を
固定するとただ一つ決まる標準的な接続である。D2

M をΘ(M)と書い
てM の曲率という。今の場合、Θ(M)はM 上の (1, 1)-形式 ∂̄∂ log hM

である。

4.3 (内積). ψ、ϕをM に値をとるX 上の滑らかな (p, q)-形式とする。
M 上の滑らかなエルミート計量 hM とX上のエルミート計量 gからψ

と ϕの点ごとの内積 〈ψ, ϕ〉が決まる。〈ψ, ψ〉は |ψ|2と略記することに
する。Xの体積要素を dV と書いて、

∫
X
|ψ|2dV = ‖ψ‖2と書くことに

する。内積を導入した後、この内積による完備化をとって二乗可積分な
世界に行き、そこで関数解析を使って、というのが調和積分論の王道
である。ここではそんなことは必要ないので、この程度で満足しよう。



4.4 (調和形式). 小平の消滅定理と榎の定理の証明で本質的役割を果た
す調和形式を導入しておこう。

定義 4.5. ϕをMに値をとるX上の滑らかな (p, q)-形式とする。∆′′

Mϕ =
0となるとき、ϕを調和形式と言う。

ここで、∆′′

M = D′′

MD
′′∗

M +D′′∗

MD
′′

M で、D
′′∗

M はD′′

M の随伴作用素であ
る。部分積分をつかうと次の事実が簡単にわかる。

事実 4.6. ∆′′∗

Mϕ = 0と ∂̄ϕ = 0かつD′′∗

Mϕ = 0は同値である。

次に、Hn,q(X,M)をM に値をとるX上の調和 (n, q)-形式のなす複
素ベクトル空間とする。ただし、M はX上の正則直線束とする。この
とき、次の基本的な定理が成立する。

定理 4.7 (小平). Hn,q(X,M)は有限次元複素ベクトル空間であって、
さらに同型Hq(X,KX ⊗M) ' Hn,q(X,M)が成立する。

証明は複素幾何の本に載っている。証明自体はそれほど難しくない。
複素多様体上で偏微分方程式論を少し展開するだけである。偏微分方
程式といっても、この場合は一番扱いやすい 2階の楕円型方程式であ
る。とは言うものの、上の定理の証明のためだけに代数幾何の専門家
が複素多様体論をいちいち証明までこめて勉強するのは非常に面倒で
ある。大半の代数幾何学者はこの定理を認めて、証明の細部までは立
ち入っていないと思われる。実際のところ、それで不自由を感じるこ
ともないであろう。

4.8 (中野の公式). Xをケーラー多様体とし、ϕをMに値をとる滑らか
な (n, q)-形式とする。このとき次が成立する。

∆′′

Mϕ = ∆′

Mϕ+
√
−1Θ(M)Λϕ(1)

ここで、∆′′

M = D′′

MD
′′∗

M +D′′∗

MD
′′

Mで、∆′

M = D′

MD
′∗

M +D′∗

MD
′

Mである。
D′∗

M はD′

M の、D
′′∗

M はD′′

M の随伴作用素で、Λは ω ∧ •の随伴である。
微分形式の世界に hM とケーラー計量 gで自然な内積をいれて考えて
いる。ωは gに対応するケーラー形式である。

4.9. ここでは中野の公式を特殊な設定で書いた。通常の教科書に載っ
ている形とは少し違うと思う。いずれにせよ、この中野の公式を証明
するところが一番面倒である。証明は難しくないのだが、とにかく面
倒なのである。本の書き方にもよるのだが、テンソル計算（なんだか
添字がいっぱいついた微分形式の計算）を長々としなくてはいけない。
と、私は思っていたし、大半の人が思っていると思う。ところが、よ
くよく考えてみると、そんなことはしなくても証明できることが分か
る。いろいろなアプローチがあると思うが、一つの簡単なアプローチ
は、ケーラー計量は 2次以上の部分を無視すればユークリッド空間の
通常の計量と同じと思って良い、という事実を使うのである。この方



法だと簡単な部分積分を少し準備しておけば、中野の公式を証明する
ことはそれほど難しくない。まぁ、この辺は自分で勉強して、自分に
あった計算方法を身に付けるしかないであろう。人の説明を読むより、
実験してルールを身に付ける方が確実である。

4.10 (アイデア). ⊗sがコホモロジー群Hq(X,KX ⊗Ll)とHq(X,KX ⊗
Ll+k) のあいだの射を導くだけではなく、調和形式の空間の間の射×s :
Hn,q(X,Ll) → Hn,q(X,Ll+k) を導くことを示す。これが示せれば単射
性は明らかである。コホモロジー類を扱うのではなく、調和形式とい
う微分形式のかけ算の話にしてしまうのである。ϕ ∈ Hn,q(X,Ll)とす
る。sϕ := s ⊗ ϕは Ll+kに値をもつ滑らかな (n, q)-形式である。これ
を調和形式の空間Hn,q(X,Ll+k)に直交射影したP (sϕ)を考える。一般
には P (sϕ) 6= sϕである。よって、我々が証明するのは、Lが半正なら
P (sϕ) = sϕということである。一応注意しておくと、

√
−1∂̄∂ log hL

が半正定値になるL上の滑らかなエルミート計量を 1つ固定し、Lmに
は計量 hm

L を入れて考えている。ただし、mは任意の正の整数である。
X上には任意のケーラー計量 gを 1つ固定していることにも注意せよ。

ここまでくれば榎の定理の証明は簡単である。

Proof. ϕ ∈ Hn,q(X,Ll)とする。示すべきことは sϕが調和形式であ
るということである。つまり、∆′′

Ll+k(sϕ) = 0 を示せばよい。これは
∂̄(sϕ) = 0かつD′′∗

Ll+k(sϕ) = 0と同値である。したがってこれらの条件
を示せばよい。最初の条件は、sが正則切断でϕが調和形式なので、鎖
法則を使うと明らかである。問題は後のほうの条件である。まず、ϕが
調和形式なので、

0 = ‖∂̄ϕ‖2 +‖D′′∗

Llϕ‖2 = ‖D′

Llϕ‖2 +‖D′∗

Llϕ‖2 +

∫
X

〈
√
−1Θ(Ll)Λϕ, ϕ〉dV

である。もうすこし詳しく書くと、式 (1)とϕの内積をX上で積分し、
適当に部分積分をつかって式を整理すると、上の式が出てくる。D′

Llϕ

は (n + 1, q)-形式なので明らかに 0である。また、Lが半正なので、
〈
√
−1Θ(Ll)Λϕ, ϕ〉 ≥ 0がXの任意の点で成立する。ゆえに、D′∗

Llϕ = 0

かつ 〈
√
−1Θ(Ll)Λϕ, ϕ〉 = 0である。上と同様に中野の公式を sϕにつ

かうと、

‖D′′∗

Ll+k(sϕ)‖2 = ‖D′∗

Ll+k(sϕ)‖2 +

∫
X

〈
√
−1Θ(Ll+k)Λ(sϕ), sϕ〉dV

である。ここでもD′

Ll+k(sϕ) = 0をつかった。定義に戻って考えると、
D′∗

Ll+k(sϕ) = sD′∗

Llϕ = 0である。そもそも、D′∗は直線束の計量に依存



しないことにも注意しておく4。よって

‖D′′∗

Ll+k(sϕ)‖2 =

∫
X

〈
√
−1Θ(Ll+k)Λ(sϕ), sϕ〉dV

が成立する。ここで、

〈
√
−1Θ(Ll+k)Λ(sϕ), sϕ〉 = |s|2〈

√
−1Θ(Ll+k)Λϕ, ϕ〉 = 0

である。もちろん |s|はhk
Lによる sの点ごとのノルムである。Θ(Lm) =

mΘ(L)が任意の正の整数に対して成り立つことも注意しておく。全部
あわせると、D′′∗

Ll+k(sϕ) = 0を得る。ゆえに sϕは調和形式である。こ
れで榎の単射性定理の証明が終了した。 �

最後に小平の消滅定理の証明についてすこし説明しておこう。

4.11 (小平の消滅定理について). Lが正なので、
√
−1Θ(L)をケーラー

形式 ω とするようなケーラー計量 g を使って同じ議論をする。ϕ ∈
Hn,q(X,L)をとってくる。このとき、〈

√
−1Θ(L)Λϕ, ϕ〉 = q|ϕ|2 に注

意して中野の公式をつかうと、

0 = ‖∂̄ϕ‖2 + ‖D′′∗

L ϕ‖2 = ‖D′

Lϕ‖2 + ‖D′∗

Lϕ‖2 + q

∫
X

|ϕ|2dV

である。これから、q ≥ 1のとき、ϕ = 0である。ゆえにHq(X,KX ⊗
L) = 0 (q ≥ 1)が従う。これが小平の消滅定理の由緒正しい証明であ
ると思う。

5. その後の発展

榎の単射性定理は、理由はよく分からないが、代数幾何学者の中で
は全く知られていない。文献としては [E]である。竹腰によるコラール
と榎の定理の一般化はたまに引用されることがある。竹腰の仕事では、
コホモロジー群を調和形式の空間で表現するという点を究極的に追い
求め、その副産物として様々な結果を出している。ここまで来ると代
数幾何と言うよりは複素幾何である。その後、大沢によって単射性定
理の部分が見直された。ただし、戦いの場は非コンパクトな多様体に
移っているので、その部分のテクニカルな議論に目を奪われて、本質
を見抜くのは大変である。で、最後にすこし宣伝しておくと、もうす
こし幾何学的な応用を目指して定式化したらどうなるのだ？と思って
追求すると、講演で話したような定理が証明できる。

定理 5.1. f : X → Y をケーラー多様体Xから複素解析空間 Y への固
有全射とする。EをX 上の正則ベクトル束、hE はE上の滑らかなエ
ルミート計量、LはX 上の正則直線束で、hLは L上の滑らかなエル
ミート計量とする。さらに、F もX 上の正則直線束とし、hF は F 上
の特異エルミート計量とする。このとき、以下を仮定する。

4ホッジのスター作用素を ∗とかくと、D
′∗ = − ∗ ∂̄∗である。



(i) Xの部分解析空間Zが存在し、hF はX \Z上で滑らかである。
(ii)

√
−1Θ(F ) ≥ −γがカレントの意味で成立する。ただし、γはX

上の滑らかな (1, 1)-形式である。
(iii)

√
−1(Θ(E) + IdE ⊗ Θ(F )) ≥Nak 0がX \ Z上で成立する。

(iv)
√
−1(Θ(E) + IdE ⊗Θ(F )− εIdE ⊗Θ(L)) ≥Nak 0がX \Z上成
立する。ただし、εはある正の実数である。

ここで、≥Nak 0は中野の意味で半正をあらわすこととする。sを Lの
零でない正則切断とすると、⊗sによって引き起こされる層の間の射

×s : Rqf∗(KX ⊗E ⊗ F ⊗ I(hF )) −→ Rqf∗(KX ⊗E ⊗ F ⊗ I(hF ) ⊗ L)

は任意の q ≥ 0に対して単射である。ただし、I(hF )は特異エルミート
計量 hF に付随する乗数イデアル層である。

詳しくは文献 [F1]と [F2]を見て頂きたい。Xがコンパクトのときは、
基本的に榎の定理の証明と同じ証明である。キーポイントは、X のか
わりにW = X \Zを考える点である。W はコンパクトではないが、適
当に良い計量を選んで完備ケーラー多様体にし、あたかもコンパクト
であるかのように議論する。W 上では考えている計量は全て滑らかな
ので、通常の議論が行える。X が非コンパクトなときは、証明はかな
り大変である。局所的に二乗可積分と大域的に二乗可積分という条件
にズレが生じるので、Xの境界付近でのL2ノルムの挙動を制御する必
要がある。
最近の代数幾何学では、非特異代数多様体Xとその上の有効Q-因子

Dの組 (X,D)を考えることが多い。従来の方法では、特異点解消と分
岐被覆をつかってDの「特異性」を無視する。今回の方法では、Xの
かわりにX \Dを考える。X \D上ではDの「特異性」は邪魔をしな
い。Dの「特異性」はX \ D上での二乗可積分条件として寄与する。
印象としてはこんな感じであろうか？
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