ABSTRACT : PROJECTIONS AND LINEAR SYZYGIES

YOUNGOOK CHOI (SEOUL NATIONAL UNIVERSITY)

Let $X \subset \mathbb{P}(H^0(\mathcal{L}))$ be a smooth projective variety embedded by the complete linear system of a very ample line bundle \mathcal{L} on X. One can ask detailed information about defining equations of X, i.e. their syzygies of X. As M. Green defined in [4], we can say that \mathcal{L} satisfies property N_0 if it gives the projectively normal embedding and \mathcal{L} satisfies property N_1 if property N_0 holds and X is cut out by quadrics. In general, \mathcal{L} satisfies property N_p , $p \geq 1$ if X is projectively normal and the projective coordinate ring S(X) of X has the following minimal free resolution of the simplest type as a graded S-module;

$$\rightarrow \cdots \rightarrow E_p \rightarrow E_{p-1} \rightarrow \cdots \rightarrow E_1 \rightarrow S \rightarrow S(X) \rightarrow 0$$

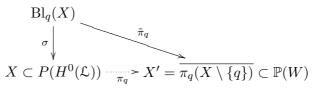
where $S = \text{Sym}(H^0(\mathcal{L}))$ and $E_i = \bigoplus^{\beta_{i,1}} S(-i-1)$ for all $1 \le i \le p$. In other words, property N_p means the minimal free resolution of the homogeneous coordinate ring S(X) of the projectively normal embedding of X is linear until the *p*-th step.

In this talk, we are interested in geometric and algebraic properties of a very ample subsystems of $H^0(\mathcal{L})$. There are two kinds of subsystems of $H^0(\mathcal{L})$ with respect to projections. One gives an isomorphic outer projection of $X \subset \mathbb{P}(H^0(\mathcal{L}))$ with centers outside $\operatorname{Sec}(X)$ which is not linearly normal and the other gives an inner projection of X which is closely related to the very ample complete linear systems of blow ups of X. In their paper ([5]), S. Kwak and E. Park gave the geometric and syzygetic effects of property N_p of $X \subset \mathbb{P}(H^0(\mathcal{L}))$ to the isomorphic projection of X in $\mathbb{P}(W)$ by a very ample subsystem $W \subset H^0(\mathcal{L})$. More precisely, one can generalize property N_p to property $N_p^{S_W}$ for a smooth variety $X \subset \mathbb{P}(W)$ as follows: X satisfies property $N_p^{S_W}$ if for $R = \bigoplus_{\ell \in \mathbb{Z}} H^0(X, \mathcal{L}^\ell)$, it has the following minimal free resolution of the simplest type as a graded S_W -module;

$$\rightarrow \cdots \rightarrow E_p \rightarrow E_{p-1} \rightarrow \cdots \rightarrow E_1 \rightarrow S_W \oplus S_W(-1)^t \rightarrow R \rightarrow 0$$

where $S_W = \text{Sym}(W)$, $t = \text{codim}(W, H^0(\mathcal{L}))$ and $E_i = \bigoplus^{\beta_{i,1}} S_W(-i-1)$ for all $1 \leq i \leq p$. In other words, property $N_p^{S_W}$ means the minimal free resolution of R as a graded S_W -module is linear until the p-th step. Recently, Kwak and Park result is generalized to the following ([2]); **Theorem 1.** Let $X \subset \mathbb{P}^r$ be a reduced nondegenerate projective subscheme which satisfies property N_p^S . If $X \subset \mathbb{P}^{r-t}$ is an isomorphic linear projection where $0 \leq t \leq p$, then $X \subset \mathbb{P}^{r-t}$ satisfies property N_{p-t}^S .

We are also interested in an inner projection of X which is given by subsystem W of $H^0(\mathcal{L})$ passing through a given point $q \in X$. Let X be a smooth projective variety in $\mathbb{P}(H^0(\mathcal{L}))$. For a closed point $q \in X$ the inner projection $\pi_q : X \dashrightarrow \mathbb{P}(W)$ defined by $\pi_q(p) = \overline{qp} \cap \mathbb{P}(W), p \neq q$, is a rational map. We can understand this situation in the following diagram; for a blow up $\mathrm{Bl}_q(X)$ of X at q, one has the regular morphism $\tilde{\pi_q} : \mathrm{Bl}_q(X) \to \mathbb{P}(W)$ with a commutative diagram;



It is said that X admits an inner projection at a point $q \in X$ if the morphism $\tilde{\pi}_q : \operatorname{Bl}_q(X) \to \overline{\pi_q(X \setminus \{q\})}$ is an embedding, i.e. $\sigma^* \mathcal{L} - E$ is very ample. When one consider this situation in a projective embedding, we have a nice criterion for $\sigma^* \mathcal{L} - E$ to be very ample. Note that the inner projection $\tilde{\pi}_q : \operatorname{Bl}_q(X) \to \mathbb{P}(W)$ with center $q \in X$ is a closed embedding if and only if $q \notin \operatorname{Trisec}(X)$ where $\operatorname{Trisec}(X)$ is the union of all trisecant lines ℓ or $\ell \subset X$ ([3]). In this case, $\tilde{\pi}_q(\operatorname{Bl}_q(X))$ is equal to $\overline{\pi_q(X \setminus \{q\})}$, the Zariski closure of $\pi_q(X \setminus \{q\})$.

With these in mind, we get the following theorem([1]) for an inner projection;

Theorem 2. Let $X \subset \mathbb{P}(H^0(\mathcal{L}))$ be a smooth irreducible projective variety. Suppose \mathcal{L} satisfies property N_p for $p \geq 1$. For any $q \in X \setminus \text{Trisec}(X)$, $\widetilde{\pi}_q(\text{Bl}_q(X)) = \overline{\pi_q(X \setminus \{q\})}$ in $\mathbb{P}(W)$ is smooth and satisfies property N_{p-1} , *i.e.* property N_{p-1} holds for $(\text{Bl}_q(X), \sigma^* \mathcal{L} - E)$.

Our method is cohomological, i.e. by using Koszul cohomology technique due to M. Green, we can show $\operatorname{Tor}_{i}^{S_{W}}(R', \mathbb{C})_{i+j} = 0, 0 \leq i \leq p$ and $j \geq 2$ for a finitely generated graded S_{W} module $R' = \bigoplus_{\ell \in \mathbb{Z}} H^{0}((\sigma^{*}\mathcal{L} - E)^{\ell}).$

Finally, we talk about some applications of our results to various varieties and their embeddings, for examples the inner projections of Veronese embeddings, Calabi-Yau manifolds, rational surfaces, and adjoint linear series of projective varieties.

References

[1] Y.Choi, P. Kang, S. Kwak, *Higher linear syzygies of inner projections and geometric applications*, preprint.

- [2] Y.Choi, S. Kwak, E. Park, Some effects of property N_p , preprint.
- [3] H. Flenner, L. O'Carroll, W. Vogel, *Joins and intersections*, Springer-Verlag, Berlin, (1999).
- [4] M. Green, Koszul cohomology and the geometry of projective varieties, J.Differential Geom. 19 (1984) 125–171.
- [5] S. Kwak, E. Park, Some effects of property N_p on the higher normality and defining equations of nonlinearly normal varieties, J. Reine Angew. Math. 582 (2005) 87–105.