VERY AMPLE LINE BUNDLES ON REGULAR SURFACES OBTAINED BY PROJECTION

Atsushi Noma*

We work over an algebraically closed field \mathbb{k} of arbitrary characteristic. Let $X \subseteq \mathbb{P}^{N}$ be a smooth irreducible surface with very ample line bundle $\mathcal{L}:=\mathcal{O}_{X}(1)$. For points $x_{1}, \ldots, x_{m} \in X$ of X, consider the blowing up $\sigma: \hat{X} \rightarrow X$ of X at x_{1}, \ldots, x_{m} with the exceptional divisors E_{1}, \ldots, E_{m} and the line bundle $\hat{\mathcal{L}}=\sigma^{*} \mathcal{L} \otimes \mathcal{O}_{\hat{X}}\left(-E_{1}-\cdots-E_{m}\right)$ on \hat{X}. The problem of finding the condition for $\hat{\mathcal{L}}$ to be very ample in terms of the configuration of points $x_{1}, \ldots, x_{m} \in X$ is considered by many authors ([Be],[CE],[C], [DH],[L]). This problem arises, for example, in the classification of surfaces by sectional genus (see, for example [I], [L]). In the classification of Del Pezzo surfaces, it is well-known that for $X=\mathbb{P}^{2}$ and $\mathcal{L}=\mathcal{O}_{\mathbb{P}^{2}}(3), \hat{\mathcal{L}}$ is very ample if and only if x_{1}, \ldots, x_{m} are distinct points with $m \leq 6$ such that no three points of x_{1}, \ldots, x_{m} are collinear and no six points of them lie on conic in \mathbb{P}^{2}. Here along this line, we give this type of condition for surfaces with $h^{1}\left(\mathcal{O}_{X}\right)=0$.

Theorem 1. Let $X \subseteq \mathbb{P}^{N}(N=d-g+1)$ be a nondegenerate, linearly normal, smooth, projective variety of dimension 2 , degree d, sectional genus g, and irregularity $h^{1}\left(\mathcal{O}_{X}\right)=0$. Let x_{1}, \ldots, x_{m} be distinct m points of X for $m \leq d-2 g-1$. Let $\sigma: \hat{X} \rightarrow X$ be a blowing up at x_{1}, \ldots, x_{m}. Then $\hat{\mathcal{L}}=\sigma^{*} \mathcal{O}_{X}(1) \otimes \mathcal{O}_{\hat{X}}\left(-E_{1}-\cdots-E_{m}\right)$ is very ample if and only if for all l with $1 \leq l \leq m$, any l points of $\left\{x_{1}, \ldots, x_{m}\right\}$ do not lie on any rational normal curve of degree l on X.

The key ingredient of the proof is the inner projection, that is the linear projection from a point of X, which appears in the definition of blowing up of a point of X. By using this, for $m=1, \hat{\mathcal{L}}$ is very ample if and only if there is no line through x_{1} meeting X in 3 points counted with multiplicity. We apply this argument successively, based on the following lemma.

Lemma 2. Let X be as in Theorem.
(1) Assume that $d=\operatorname{deg} X \geq 2 g+2$. If $\ell \subseteq \mathbb{P}^{N}$ is a line not lying on X, then $l(X \cap \ell) \leq 2$.
(2) If $D \subseteq X$ is an irreducible reduced curve of degree m with $m \leq d-2 g$, then $D \cdot E \leq 1$ for a line E on X with $D \neq E$.

As an application of Theorem, we will give a necessary and sufficient condition for line bundles to be very ample which appear in the classification by the sectional genus due to Ionescu [I, (3.1) and (4.1)]. We deal with the following three cases:
(A) (X, \mathcal{L}) is isomorphic to $F_{e}, H_{e}=2 C_{0}+(3+e) F, e=0,1,2$, or to the blowing-up σ of one of these with center $k \leq 7$ points lying on different fibres, $H=\sigma^{*}\left(H_{e}\right)-E_{1}-\cdots-E_{k}$; moreover $5 \leq d \leq 12 . \Longrightarrow g=2: d-2 g-1=12-5=7$.
(B) (X, \mathcal{L}) is isomorphic to $F_{e}, H_{e}=2 C_{0}+(4+e) F, e=0,1,2,3$, or to the blowing-up σ of one of these with center $k \leq 9$ points lying on different fibres, $H=\sigma^{*}\left(H_{e}\right)-E_{1}-\cdots-E_{k}$; moreover $7 \leq d \leq 16 . \Longrightarrow g=3: d-2 g-1=16-7=9$.
(C) $\mathbb{P}^{2}, H=4 L$ where L is a line, or a blowing-up σ of it with center $k \leq 10$ ordinary points, $H=\sigma^{*}(4 L)-E_{1}-\cdots-E_{k}$; moreover $6 \leq d \leq 16 . \Longrightarrow g=3: d-2 g-1=16-7=9$.
For example, in the third case (C), we have the following:

Theorem 3. Let $\sigma: \hat{\mathbb{P}^{2}} \rightarrow \mathbb{P}^{2}$ be the blowing-up of \mathbb{P}^{2} at x_{1}, \ldots, x_{k} with $k \leq 9$ with the exceptional divisors E_{1}, \ldots, E_{k}. Let \mathcal{L} be the line bundle $\sigma^{*} \mathcal{O}_{\mathbb{P}^{2}}(4) \otimes \mathcal{O}_{\mathbb{P}^{2}}\left(-E_{1}-\cdots-E_{k}\right)$. Then the following are equivalent:
(1) \mathcal{L} is very ample.
(2) For every integer l and divisor B in (3.1), no distinct l points of $\left\{x_{1}, \ldots, x_{k}\right\}$ lie on any curve linearly equivalent to B.
(3) For every integer l and divisor B in (3.1), and for every distinct l points $\left\{x_{i_{1}}, \ldots, x_{i_{l}}\right\}$ of $\left\{x_{1}, \ldots, x_{k}\right\}$, we have $h^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(B) \otimes \mathcal{I}_{\left\{x_{i_{1}}, \ldots, x_{i_{l}}\right\} / \mathbb{P}^{2}}\right)=0$.

$$
\begin{equation*}
(l, B)=(4, L) ; \quad(8,2 L), \quad \text { where } L \in\left|\mathcal{O}_{\mathbb{P}^{2}}(1)\right| \tag{3.1}
\end{equation*}
$$

Theorem 4. ([CF]) Let $\sigma: \hat{X}=\hat{\mathbb{P}}^{2} \rightarrow \mathbb{P}^{2}$ be the blowing-up of \mathbb{P}^{2} at distinct 10 points x_{1}, \ldots, x_{10} of \mathbb{P}^{2} with the exceptional divisors E_{1}, \ldots, E_{10}. Let L be a line in \mathbb{P}^{2}. Then the following are equivalent:
(1) The line bundle $\hat{\mathcal{L}}=\sigma^{*} \mathcal{O}_{\mathbb{P}^{2}}(4) \otimes \mathcal{O}_{\hat{\mathbb{P}}^{2}}\left(-E_{1}-\cdots-E_{10}\right)$ is very ample.
(2) For $(l, B)=(4, L)$ and $(8,2 L)$, no distinct l points of $\left\{x_{1}, \ldots, x_{10}\right\}$ lie on any curve linearly equivalent to B; and $\left\{x_{1}, \ldots, x_{10}\right\}$ do not lie on any member $B \in\left|\mathcal{O}_{\mathbb{P}^{2}}(3)\right|$.
(3) For $(l, B)=(4, L),(8,2 L)$ and $(10,3 L)$, and for every distinct l points $\left\{x_{i_{1}} \ldots x_{i_{l}}\right\}$ of $\left\{x_{1}, \ldots, x_{k}\right\}$, we have $h^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(B) \otimes \mathcal{I}_{\left\{x_{i_{1}}, \ldots, x_{i_{l}}\right\} / \mathbb{P}^{2}}\right)=0$.

References

[Be] E. Bese, On the spannedness and very ampleness of certain line bundles on the blow-ups of $\mathbb{P}_{\mathbb{C}}^{2}$ and F_{r}, Math. Ann. 262 (1983), 225-238.
[CF] F.Catanese, M. Franciosi, Divisors of small genus on algebraic surfaces and projective embeddings, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9 (1996), 109-140.
[C] M.Coppens, Very ample linear systems on blowings-up at general points of smooth projective varieties, Pacific J. Math. 202 (2002), 313-327.
[DH] J. D'Almeida, A. Hirshowitz, Quelques plongements projectifs nonspeciaux de surfaces rationnelles, Math. Z. 211 (1992), 479-483.
[I] P.Ionescu, Embedded projective varieties of small invariants, Algebraic geometry, Bucharest 1982, Lecture Note in Math. 1056 (1984), 142-186.
[L] E.L. Livorni, On the existence of some surfaces, Algebraic geometry (L'Aquila, 1988), Lecture Note in Math. 1417 (1990), 155-179.

Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National University, Yokohama 240-8501 Japan

E-mail address: noma@edhs.ynu.ac.jp

