VERY AMPLE LINE BUNDLES ON REGULAR SURFACES OBTAINED BY PROJECTION

Atsushi Noma*

We work over an algebraically closed field k of arbitrary characteristic. Let $X \subseteq \mathbb{P}^N$ be a smooth irreducible surface with very ample line bundle $L := \mathcal{O}_X(1)$. For points $x_1, \ldots, x_m \in X$ of X, consider the blowing up $\sigma: \hat{X} \rightarrow X$ of X at x_1, \ldots, x_m with the exceptional divisors E_1, \ldots, E_m and the line bundle $\hat{L} = \sigma^* L \otimes \mathcal{O}_X(-E_1 - \cdots - E_m)$ on \hat{X}. The problem of finding the condition for \hat{L} to be very ample in terms of the configuration of points $x_1, \ldots, x_m \in X$ is considered by many authors ([Be],[CE],[C],[DH],[L]). This problem arises, for example, in the classification of surfaces by sectional genus (see, for example [I], [L]). In the classification of Del Pezzo surfaces, it is well-known that for $X = \mathbb{P}^2$ and $L = \mathcal{O}_{\mathbb{P}^2}(3)$, \hat{L} is very ample if and only if x_1, \ldots, x_m are distinct points with $m \leq 6$ such that no three points of x_1, \ldots, x_m are collinear and no six points of them lie on conic in \mathbb{P}^2. Here along this line, we give this type of condition for surfaces with $h^1(\mathcal{O}_X) = 0$.

Theorem 1. Let $X \subseteq \mathbb{P}^N$ ($N = d - g + 1$) be a nondegenerate, linearly normal, smooth, projective variety of dimension 2, degree d, sectional genus g, and irregularity $h^1(\mathcal{O}_X) = 0$. Let x_1, \ldots, x_m be distinct m points of X for $m \leq d - 2g - 1$. Let $\sigma: \hat{X} \rightarrow X$ be a blowing up at x_1, \ldots, x_m. Then $\hat{L} = \sigma^* \mathcal{O}_X(1) \otimes \mathcal{O}_X(-E_1 - \cdots - E_m)$ is very ample if and only if for all l with $1 \leq l \leq m$, any l points of $\{x_1, \ldots, x_m\}$ do not lie on any rational normal curve of degree l on X.

The key ingredient of the proof is the *inner projection*, that is the linear projection from a point of X, which appears in the definition of blowing up of a point of X. By using this, for $m = 1$, \hat{L} is very ample if and only if there is no line through x_1 meeting X in 3 points counted with multiplicity. We apply this argument successively, based on the following lemma.

Lemma 2. Let X be as in Theorem.

1. Assume that $d = \deg X \geq 2g + 2$. If $\ell \subseteq \mathbb{P}^N$ is a line not lying on X, then $l(X \cap \ell) \leq 2$.

2. If $D \subseteq X$ is an irreducible reduced curve of degree m with $m \leq d - 2g$, then $D \cdot E \leq 1$ for a line E on X with $D \neq E$.

As an application of Theorem, we will give a necessary and sufficient condition for line bundles to be very ample which appear in the classification by the sectional genus due to Ionescu [I, (3.1) and (4.1)]. We deal with the following three cases:

(A) (X, L) is isomorphic to $F_e, \ H_e = 2C_0 + (3 + e)F$, $e = 0, 1, 2$, or to the blowing-up σ of one of these with center $k \leq 7$ points lying on different fibres, $H = \sigma^*(H_e) - E_1 - \cdots - E_k$; moreover $5 \leq d \leq 12$. $\Rightarrow g = 2: d - 2g - 1 = 12 - 5 = 7$.

(B) (X, L) is isomorphic to $F_e, \ H_e = 2C_0 + (4 + e)F$, $e = 0, 1, 2, 3$, or to the blowing-up σ of one of these with center $k \leq 9$ points lying on different fibres, $H = \sigma^*(H_e) - E_1 - \cdots - E_k$; moreover $7 \leq d \leq 16$. $\Rightarrow g = 3: d - 2g - 1 = 16 - 7 = 9$.

(C) $\mathbb{P}^2, \ H = 4L$ where L is a line, or a blowing-up σ of it with center $k \leq 10$ ordinary points, $H = \sigma^*(4L) - E_1 - \cdots - E_k$; moreover $6 \leq d \leq 16$. $\Rightarrow g = 3: d - 2g - 1 = 16 - 7 = 9$.

For example, in the third case (C), we have the following:

Typeset by \LaTeX
Theorem 3. Let $\sigma : \hat{\mathbb{P}}^2 \to \mathbb{P}^2$ be the blowing-up of \mathbb{P}^2 at x_1, \ldots, x_k with $k \leq 9$ with the exceptional divisors E_1, \ldots, E_k. Let \mathcal{L} be the line bundle $\sigma^* \mathcal{O}_{\mathbb{P}^2}(4) \otimes \mathcal{O}_{\hat{\mathbb{P}}^2}(-E_1 - \cdots - E_k)$. Then the following are equivalent:

1. \mathcal{L} is very ample.
2. For every integer l and divisor B in (3.1), no distinct l points of $\{x_1, \ldots, x_k\}$ lie on any curve linearly equivalent to B.
3. For every integer l and divisor B in (3.1), and for every distinct l points $\{x_{i_1}, \ldots, x_{i_l}\}$ of $\{x_1, \ldots, x_k\}$, we have $h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(B) \otimes \mathcal{I}_{\{x_{i_1}, \ldots, x_{i_l}\}/\mathbb{P}^2}) = 0$.

(3.1) $(l, B) = (4, L); (8, 2L)$, where $L \in |\mathcal{O}_{\mathbb{P}^2}(1)|$.

Theorem 4. ([CF]) Let $\sigma : \hat{\mathbb{P}}^2 \to \mathbb{P}^2$ be the blowing-up of \mathbb{P}^2 at distinct 10 points x_1, \ldots, x_{10} of \mathbb{P}^2 with the exceptional divisors E_1, \ldots, E_{10}. Let L be a line in \mathbb{P}^2. Then the following are equivalent:

1. The line bundle $\hat{\mathcal{L}} = \sigma^* \mathcal{O}_{\mathbb{P}^2}(4) \otimes \mathcal{O}_{\hat{\mathbb{P}}^2}(-E_1 - \cdots - E_{10})$ is very ample.
2. For $(l, B) = (4, L)$ and $(8, 2L)$, no distinct l points of $\{x_1, \ldots, x_{10}\}$ lie on any curve linearly equivalent to B; and $\{x_1, \ldots, x_{10}\}$ do not lie on any member $B \in |\mathcal{O}_{\mathbb{P}^2}(3)|$.
3. For $(l, B) = (4, L); (8, 2L)$ and $(10, 3L)$, and for every distinct l points $\{x_{i_1}, \ldots, x_{i_l}\}$ of $\{x_1, \ldots, x_k\}$, we have $h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(B) \otimes \mathcal{I}_{\{x_{i_1}, \ldots, x_{i_l}\}/\mathbb{P}^2}) = 0$.

References

Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National University, Yokohama 240-8501 Japan
E-mail address: nomad@edhs.ynu.ac.jp