VERY AMPLE LINE BUNDLES ON REGULAR SURFACES OBTAINED BY PROJECTION

Atsushi Noma*

We work over an algebraically closed field k of arbitrary characteristic. Let $X \subseteq \mathbb{P}^N$ be a smooth irreducible surface with very ample line bundle $\mathcal{L} := \mathcal{O}_X(1)$. For points $x_1, \ldots, x_m \in X$ of X, consider the blowing up $\sigma: \hat{X} \to X$ of X at x_1, \ldots, x_m with the exceptional divisors E_1, \ldots, E_m and the line bundle $\hat{\mathcal{L}} = \sigma^* \mathcal{L} \otimes \mathcal{O}_{\hat{X}}(-E_1 - \cdots - E_m)$ on \hat{X} . The problem of finding the condition for $\hat{\mathcal{L}}$ to be very ample in terms of the configuration of points $x_1, \ldots, x_m \in X$ is considered by many authors ([Be],[CE],[C],[DH],[L]). This problem arises, for example, in the classification of surfaces by sectional genus (see, for example [I], [L]). In the classification of Del Pezzo surfaces, it is well-known that for $X = \mathbb{P}^2$ and $\mathcal{L} = \mathcal{O}_{\mathbb{P}^2}(3), \hat{\mathcal{L}}$ is very ample if and only if x_1, \ldots, x_m are distinct points with $m \leq 6$ such that no three points of x_1, \ldots, x_m are collinear and no six points of them lie on conic in \mathbb{P}^2 . Here along this line, we give this type of condition for surfaces with $h^1(\mathcal{O}_X) = 0$.

Theorem 1. Let $X \subseteq \mathbb{P}^N$ (N = d - g + 1) be a nondegenerate, linearly normal, smooth, projective variety of dimension 2, degree d, sectional genus g, and irregularity $h^1(\mathcal{O}_X) = 0$. Let x_1, \ldots, x_m be distinct m points of X for $m \leq d - 2g - 1$. Let $\sigma \colon \hat{X} \to X$ be a blowing up at x_1, \ldots, x_m . Then $\hat{\mathcal{L}} = \sigma^* \mathcal{O}_X(1) \otimes \mathcal{O}_{\hat{X}}(-E_1 - \cdots - E_m)$ is very ample if and only if for all l with $1 \leq l \leq m$, any l points of $\{x_1, \ldots, x_m\}$ do not lie on any rational normal curve of degree l on X.

The key ingredient of the proof is the inner projection, that is the linear projection from a point of X, which appears in the definition of blowing up of a point of X. By using this, for m = 1, $\hat{\mathcal{L}}$ is very ample if and only if there is no line through x_1 meeting X in 3 points counted with multiplicity. We apply this argument successively, based on the following lemma.

Lemma 2. Let X be as in Theorem.

- (1) Assume that $d = \deg X \ge 2g + 2$. If $\ell \subseteq \mathbb{P}^N$ is a line not lying on X, then $l(X \cap \ell) \le 2$.
- (2) If $D \subseteq X$ is an irreducible reduced curve of degree m with $m \leq d 2g$, then $D \cdot E \leq 1$ for a line E on X with $D \neq E$.

As an application of Theorem, we will give a necessary and sufficient condition for line bundles to be very ample which appear in the classification by the sectional genus due to Ionescu [I, (3.1) and (4.1)]. We deal with the following three cases:

- (A) (X, \mathcal{L}) is isomorphic to F_e , $H_e = 2C_0 + (3+e)F$, e = 0, 1, 2, or to the blowing-up σ of one of these with center $k \leq 7$ points lying on different fibres, $H = \sigma^*(H_e) E_1 \cdots E_k$; moreover $5 \leq d \leq 12$. $\implies g = 2$: d 2g 1 = 12 5 = 7.
- (B) (X, \mathcal{L}) is isomorphic to F_e , $H_e = 2C_0 + (4+e)F$, e = 0, 1, 2, 3, or to the blowing-up σ of one of these with center $k \leq 9$ points lying on different fibres, $H = \sigma^*(H_e) E_1 \cdots E_k$; moreover $7 \leq d \leq 16$. $\implies g = 3$: d 2g 1 = 16 7 = 9.
- (C) \mathbb{P}^2 , H = 4L where L is a line, or a blowing-up σ of it with center $k \leq 10$ ordinary points, $H = \sigma^*(4L) - E_1 - \cdots - E_k$; moreover $6 \leq d \leq 16$. $\implies g = 3$: d - 2g - 1 = 16 - 7 = 9.

For example, in the third case (C), we have the following:

Typeset by $\mathcal{AMS}\text{-}T_{E}X$

Theorem 3. Let $\sigma: \hat{\mathbb{P}^2} \to \mathbb{P}^2$ be the blowing-up of \mathbb{P}^2 at x_1, \ldots, x_k with $k \leq 9$ with the exceptional divisors E_1, \ldots, E_k . Let \mathcal{L} be the line bundle $\sigma^* \mathcal{O}_{\mathbb{P}^2}(4) \otimes \mathcal{O}_{\hat{\mathbb{P}^2}}(-E_1 - \cdots - E_k)$. Then the following are equivalent:

- (1) \mathcal{L} is very ample.
- (2) For every integer l and divisor B in (3.1), no distinct l points of $\{x_1, \ldots, x_k\}$ lie on any curve linearly equivalent to B.
- (3) For every integer l and divisor B in (3.1), and for every distinct l points $\{x_{i_1}, \ldots, x_{i_l}\}$ of $\{x_1, \ldots, x_k\}$, we have $h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(B) \otimes \mathcal{I}_{\{x_{i_1}, \ldots, x_{i_l}\}/\mathbb{P}^2}) = 0$.

(3.1)
$$(l,B) = (4,L); (8,2L), \quad where \ L \in |\mathcal{O}_{\mathbb{P}^2}(1)|.$$

Theorem 4. ([CF]) Let $\sigma: \hat{X} = \hat{\mathbb{P}}^2 \to \mathbb{P}^2$ be the blowing-up of \mathbb{P}^2 at distinct 10 points x_1, \ldots, x_{10} of \mathbb{P}^2 with the exceptional divisors E_1, \ldots, E_{10} . Let L be a line in \mathbb{P}^2 . Then the following are equivalent:

- (1) The line bundle $\hat{\mathcal{L}} = \sigma^* \mathcal{O}_{\mathbb{P}^2}(4) \otimes \mathcal{O}_{\hat{\mathbb{P}^2}}(-E_1 \cdots E_{10})$ is very ample.
- (2) For (l, B) = (4, L) and (8, 2L), no distinct l points of $\{x_1, \ldots, x_{10}\}$ lie on any curve linearly equivalent to B; and $\{x_1, \ldots, x_{10}\}$ do not lie on any member $B \in |\mathcal{O}_{\mathbb{P}^2}(3)|$.
- (3) For (l, B) = (4, L), (8, 2L) and (10, 3L), and for every distinct l points $\{x_{i_1} \dots x_{i_l}\}$ of $\{x_1, \dots, x_k\}$, we have $h^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(B) \otimes \mathcal{I}_{\{x_{i_1}, \dots, x_{i_l}\}/\mathbb{P}^2}) = 0$.

References

- [Be] E. Bese, On the spannedness and very ampleness of certain line bundles on the blow-ups of $\mathbb{P}^2_{\mathbb{C}}$ and F_r , Math. Ann. **262** (1983), 225–238.
- [CF] F.Catanese, M. Franciosi, Divisors of small genus on algebraic surfaces and projective embeddings, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9 (1996), 109–140.
- [C] M.Coppens, Very ample linear systems on blowings-up at general points of smooth projective varieties, Pacific J. Math. 202 (2002), 313–327.
- [DH] J. D'Almeida, A. Hirshowitz, Quelques plongements projectifs nonspeciaux de surfaces rationnelles, Math. Z. 211 (1992), 479–483.
- P.Ionescu, Embedded projective varieties of small invariants, Algebraic geometry, Bucharest 1982, Lecture Note in Math. 1056 (1984), 142–186.
- [L] E.L. Livorni, On the existence of some surfaces, Algebraic geometry (L'Aquila, 1988), Lecture Note in Math. 1417 (1990), 155–179.

Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National University, Yokohama 240-8501 Japan

E-mail address: noma@edhs.ynu.ac.jp