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Every normal complex surface singularity with Q-homology sphere link has a
universal abelian cover. Neumann and Wahl conjectured that the universal abelian
cover of a rational or minimally elliptic singularity is a complete intersection sin-
gularity defined by a system of “splice diagram equations”. We will discuss the
universal abelian covers and an approach to the conjecture.

Let (X, o) be a normal complex surface singularity germ and Σ its link, i.e.,
the boundary of a regular neighborhood of o ∈ X. We may assume that X is
homeomorphic to the cone over Σ. Let Γ denote the resolution graph of (X, o). It
is known that Γ and Σ determine each other ([1]). Assume that Σ is a Q-homology
sphere, or equivalently, that the exceptional set of a good resolution is a tree of
rational curves. Then G := H1(Σ,Z) is finite. A morphism (Y, o) → (X, o) of germs
of normal surface singularities is called a universal abelian covering if it induces an
unramified Galois covering Y \ {o} → X \ {o} with covering transformation group
G. By our assumption, the universal abelian covering (Y, o) → (X, o) uniquely
exist; in fact, the link of Y is the universal abelian cover of Σ in the topological
sense.

Neumann and Wahl introduced the splice diagram equations associated with
Γ satisfying the “semigroup condition”([2], [4], [3]). Let Ỹ denote the singular-
ity defined by the splice diagram equations obtained from Γ. They proved that
Ỹ is an isolated complete intersection surface singularity, and that if Γ also sat-
isfies the “congruence condition”, then G acts on Ỹ and the quotient Ỹ /G is a
normal surface singularity (it is called a splice-quotient singularity) with resolution
graph Γ, and the quotient morphism Ỹ → Ỹ /G is the universal abelian covering.
They conjectured that rational singularities and minimally elliptic singularities with
Q-homology sphere links are splice-quotient singularities. Our approach to the con-
jecture is as follows.

Let π : M → X be the minimal good resolution, and let A =
⋃

iAi be the
decomposition of the exceptional set A = π−1(o) into irreducible components. Let
AZ =

∑
ZAi and AQ = AZ ⊗ Q. Let Āi ∈ AQ satisfy Āi · Aj = −δij . We denote

by ĀZ the subgroup of AQ generated by Āi’s. Then H1(Σ,Z) is isomorphic to the
group ĀZ/AZ. We can construct an OX -algebra A :=

⊕
g∈G π∗OM (Dg) such that

Y = SpecanX A, where Dg are divisors on M , and if Dg is numerically equivalent
to Cg ∈ ĀZ, then {Cg mod AZ|g ∈ G} = ĀZ/AZ ([6]). The algebra A and splice
diagram equations are connected by “monomial cycles”.

A component Ai is called an end-curve if (A−Ai) ·Ai ≤ 1. We denote by E(A)
the set of end-curves. A connected component of A − Ai is called a branch of Ai.
A component Ai is called a node if (A−Ai) ·Ai ≥ 3.
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Definition 1. Let D =
∑
aiĀi ∈ ĀZ, ai ≥ 0. If ai = 0 for all Ai /∈ E(A), then we

call D a monomial cycle. For any monomial cycle D =
∑m

i=1 aiĀi, we associate a
monomial

x(D) :=
m∏

i=1

xai
i ∈ C[x1, . . . , xm].

The x induces an isomorphism between the semigroup of monomial cycles and
that of monomials of x1, . . . , xm.

We consider the following three conditions.

Condition 2. For any branch C of any node Ai, there exists a monomial cycle D
such that D − Āi is an effective integral cycle supported on C.

Condition 3. A is star-shaped, or for any branch C of any component Ai /∈ E(A),
the fundamental cycle ZC supported on C satisfies ZC ·Ai = 1.

Let ni be a positive integer such that niĀi ∈ AZ and suppose Cgi
≡ Āi

(mod AZ). Then, in H0(A), H0(OM (Dgi
))ni ⊂ H0(OX).

Condition 4. For each end Ai ∈ E(A), there exists yi ∈ H0(OM (Dgi
)) such

that div(yni
i ) is of the form ni(Āi + H), where H has no component of A and

A ·H = Ai ·H = 1.

Condition 2 is equivalent to the semigroup condition and the congruence con-
dition ([3]). So under this condition, splice diagram equations are defined and the
“leading terms” are linear combinations of x(D)’s, where D’s are the monomial
cycles as in Condition 2.

Lemma 5. Condition 3 implies Condition 2. Condition 3 and 4 are satisfied if
(X, o) is a rational or a minimally elliptic singularity.

Let S = C{x1, . . . , xm} be the convergent power series ring.

Theorem 6 ([5]). Suppose that Condition 3 and 4 are satisfied. Then a homo-
morphism ψ : S → OY,o defined by ψ(xi) = yi is surjective, and the kernel of ψ is
generated by the splice diagram equations which are homogeneous with respect to
G-grading.

Therefore, rational singularities and minimally elliptic singularities with Q-
homology sphere links are splice-quotient singularities.
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